A vulnerability in Microsoft Partner Center (partner.microsoft.com) allowed unauthenticated users to access internal resources. Specifically, improperly configured Azure Active Directory (Azure AD) application and service principal permissions enabled unauthorized access to certain Partner Center APIs. This misconfiguration potentially exposed sensitive business information related to Microsoft partners. Microsoft addressed the vulnerability by correcting the Azure AD application and service principal permissions to prevent unauthorized access.
Security researcher Eric Daigle discovered a significant vulnerability in several "smart" apartment intercom systems. By exploiting a poorly implemented API within these systems, he was able to remotely unlock building doors and individual apartment units using only his phone and publicly available information. He accomplished this by crafting specific HTTP requests that bypassed security measures, granting him unauthorized access. Daigle responsibly disclosed the vulnerability to the affected vendors, prompting them to address the issue and improve their security protocols. This highlighted the risk associated with insecure IoT devices and the importance of robust API security in connected building systems.
HN commenters discuss the prevalence of easily-exploitable vulnerabilities in building access control systems. Several highlight the inherent insecurity of relying solely on cellular connections for such critical infrastructure, pointing out the ease with which cellular signals can be intercepted or spoofed. Others note the conflict between convenience and security, acknowledging that many residents prioritize ease of access over robust protection. Some commenters share anecdotal experiences with similar vulnerabilities in their own buildings, while others suggest potential solutions, such as requiring secondary authentication factors or utilizing more secure communication protocols. The ethical implications of publicly disclosing such vulnerabilities are also debated, with some arguing for responsible disclosure while others emphasize the urgent need for awareness and immediate action. A few commenters question the author's decision to reveal specific technical details, fearing it could empower malicious actors.
The blog post "Bad Smart Watch Authentication" details a vulnerability discovered in a smart watch's companion app. The app, when requesting sensitive fitness data, used a predictable, sequential ID in its API requests. This allowed the author, by simply incrementing the ID, to access the fitness data of other users without proper authorization. This highlights a critical flaw in the app's authentication and authorization mechanisms, demonstrating how easily user data could be exposed due to poor security practices.
Several Hacker News commenters criticize the smartwatch authentication scheme described in the article, calling it "security theater" and "fundamentally broken." They point out that relying on a QR code displayed on a trusted device (the watch) to authenticate on another device (the phone) is flawed, as it doesn't verify the connection between the watch and the phone. This leaves it open to attacks where a malicious actor could intercept the QR code and use it themselves. Some suggest alternative approaches, such as using Bluetooth proximity verification or public-key cryptography, to establish a secure connection between the devices. Others question the overall utility of this type of authentication, highlighting the inconvenience and limited security benefits it offers. A few commenters mention similar vulnerabilities in existing passwordless login systems.
The NSA's 2024 guidance on Zero Trust architecture emphasizes practical implementation and maturity progression. It shifts away from rigid adherence to a specific model and instead provides a flexible, risk-based approach tailored to an organization's unique mission and operational context. The guidance identifies four foundational pillars: device visibility and security, network segmentation and security, workload security and hardening, and data security and access control. It further outlines five levels of Zero Trust maturity, offering a roadmap for incremental adoption. Crucially, the NSA stresses continuous monitoring and evaluation as essential components of a successful Zero Trust strategy.
HN commenters generally agree that the NSA's Zero Trust guidance is a good starting point, even if somewhat high-level and lacking specific implementation details. Some express skepticism about the feasibility and cost of full Zero Trust implementation, particularly for smaller organizations. Several discuss the importance of focusing on data protection and access control as core principles, with suggestions for practical starting points like strong authentication and microsegmentation. There's a shared understanding that Zero Trust is a journey, not a destination, and that continuous monitoring and improvement are crucial. A few commenters offer alternative perspectives, suggesting that Zero Trust is just a rebranding of existing security practices or questioning the NSA's motives in promoting it. Finally, there's some discussion about the challenges of managing complexity in a Zero Trust environment and the need for better tooling and automation.
This project describes a method to use an Apple device (iPhone or Apple Watch) as an access card even with unsupported access control systems. It leverages the device's NFC capabilities to read the card's data, then emulates the card using an Arduino and RFID reader/writer. The user taps their physical access card on the RFID reader connected to the Arduino, which then transmits the card data to an Apple device via Bluetooth. The Apple device then stores and transmits this data wirelessly to the Arduino when presented to the reader, effectively cloning the original card's functionality. This allows users to unlock doors and other access points without needing their physical card.
HN users discuss the practicality and security implications of using an Apple device as an access card in unsupported systems. Several commenters point out the inherent security risks, particularly if the system relies solely on NFC broadcasting without further authentication. Others highlight the potential for lock-in and the difficulties in managing lost or stolen devices. Some express skepticism about the reliability of NFC in real-world scenarios, while others suggest alternative solutions like using a Raspberry Pi for more flexible and secure access control. The overall sentiment leans towards caution, with many emphasizing the importance of robust security measures in access control systems.
Summary of Comments ( 0 )
https://news.ycombinator.com/item?id=43266429
HN users discuss the lack of detail in the CVE report for CVE-2024-49035, making it difficult to assess the actual impact. Some speculate about the potential severity, ranging from trivial to highly impactful depending on the specific exposed data and functionality. The vagueness also raises questions about Microsoft's disclosure process and the potential for more serious underlying issues. Several commenters note the irony of a vulnerability on a partner security portal, highlighting the difficulty of maintaining perfect security even for organizations focused on it. One user questions the use of "unauthenticated access" in the title, suggesting it might be misleading without knowing what level of access was granted.
The Hacker News post titled "Vulnerability in partner.microsoft.com allows unauthenticated access" linking to a NIST vulnerability disclosure (CVE-2024-49035) has a modest number of comments, generating a brief discussion around the nature of the vulnerability and its potential impact.
Several commenters focused on the ambiguity surrounding the actual impact of the vulnerability. The NIST disclosure provides limited technical detail, stating only that it allows "unauthenticated access." Commenters questioned what exactly an attacker could do with this unauthenticated access. Could they retrieve sensitive data? Modify information? Or was it simply access to a publicly available area that didn't require authentication in the first place? This lack of clarity was a central theme in the discussion.
One commenter pointed out the apparent irony of a vulnerability existing on a partner portal specifically designed for managing security products. They highlighted the potential reputational damage this could cause Microsoft, especially given its focus on security.
There's also a brief exchange regarding the use of "unauthenticated access" versus "unauthorized access." One commenter suggests the former is a subset of the latter, arguing that all unauthenticated access is unauthorized, but not all unauthorized access is necessarily unauthenticated. This spurred a short discussion about the nuances of these terms in a security context.
Finally, some comments speculated on the root cause of the vulnerability, suggesting possibilities like misconfigured access control lists (ACLs) or an internal tool inadvertently exposed to the public. However, these remained speculations due to the limited information available in the NIST disclosure. No commenter claimed definitive knowledge of the vulnerability's technical details beyond what was publicly disclosed.
Overall, the discussion reflects a cautious interest in the vulnerability, tempered by the lack of detailed information. Commenters clearly recognize the potential seriousness of an unauthenticated access vulnerability on a Microsoft partner portal, but the limited disclosure prevents a deeper analysis of the issue.