Colinux allows running Linux applications on a Windows system without the need for a virtual machine. It achieves this by running the Linux kernel as a single, large, cooperative Windows process. This process manages its own memory and handles Linux system calls, effectively creating a contained Linux environment within Windows. User-mode Linux applications then run within this environment, interacting with the Windows host only through a specialized filesystem driver and networking layer provided by Colinux. This approach offers performance advantages over traditional virtualization by minimizing the overhead associated with hardware emulation.
cute_headers
is a curated collection of single-header C/C++ libraries, specifically geared towards game development. These libraries are designed to be easily integrated, requiring no external dependencies or build systems. They cover a range of functionalities often needed in games, including linear algebra, collision detection, graphics, input handling, and more. The project aims to provide a convenient and lightweight way to access commonly used tools without the overhead of complex library management. This makes them particularly suitable for small projects, rapid prototyping, or learning purposes.
Hacker News users generally praised the simplicity and utility of Randy Gaul's single-file libraries. Several commenters highlighted the educational value of the code, particularly for understanding fundamental game development concepts and data structures. Some discussed the trade-offs of using such minimal libraries versus larger, more feature-rich alternatives, acknowledging the benefits of these smaller libraries for learning and small projects while recognizing potential limitations for complex endeavors. A few commenters also mentioned specific libraries they found particularly interesting or useful, including the string library and the JSON parser. There was a short thread discussing licensing, ultimately confirming that the MIT license allows for commercial use.
The "R1 Computer Use" document outlines strict computer usage guidelines for a specific group (likely employees). It prohibits personal use, unauthorized software installation, and accessing inappropriate content. All computer activity is subject to monitoring and logging. Users are responsible for keeping their accounts secure and reporting any suspicious activity. The policy emphasizes the importance of respecting intellectual property and adhering to licensing agreements. Deviation from these rules may result in disciplinary action.
Hacker News commenters on the "R1 Computer Use" post largely focused on the impracticality of the system for modern usage. Several pointed out the extremely slow speed and limited storage, making it unsuitable for anything beyond very basic tasks. Some appreciated the historical context and the demonstration of early computing, while others questioned the value of emulating such a limited system. The discussion also touched upon the challenges of preserving old software and hardware, with commenters noting the difficulty in finding working components and the expertise required to maintain these systems. A few expressed interest in the educational aspects, suggesting its potential use for teaching about the history of computing or demonstrating fundamental computer concepts.
Memfault, a platform for monitoring and debugging connected devices, is seeking an experienced Android System (AOSP) engineer. This role involves working deeply within the Android Open Source Project to develop and improve Memfault's firmware over-the-air (FOTA) updating system and device monitoring capabilities. The ideal candidate possesses strong C/C++ skills, a deep understanding of AOSP internals, and experience with embedded systems, particularly in the realm of firmware updates and low-level debugging. This position offers the opportunity to contribute to a fast-growing startup and shape the future of device reliability.
Several commenters on Hacker News expressed interest in the Memfault position, inquiring about remote work possibilities and the specific nature of "low-level" work involved. Some discussion revolved around the challenges and rewards of working with AOSP, with one commenter highlighting the complexity and fragmentation of the Android ecosystem. Others noted the niche nature of embedded Android/AOSP development and the potential career benefits of specializing in this area. A few commenters also touched upon Memfault's business model and the value proposition of their product for embedded developers. One comment suggested exploring similar tools in the embedded Linux space, while another briefly discussed the intricacies of AOSP customization by different device manufacturers.
This blog post advocates for a "no-panic" approach to Rust systems programming, aiming to eliminate all panics in production code. The author argues that while panic!
is useful during development, it's unsuitable for production systems where predictable failure handling is crucial. They propose using the ?
operator extensively for error propagation and leveraging types like Result
and Option
to explicitly handle potential failures. This forces developers to consider and address all possible error scenarios, leading to more robust and reliable systems. The post also touches upon strategies for handling truly unrecoverable errors, suggesting techniques like logging the error and then halting the system gracefully, rather than relying on the unpredictable behavior of a panic.
HN commenters largely agree with the author's premise that the no_panic
crate offers a useful approach for systems programming in Rust. Several highlight the benefit of forcing explicit error handling at compile time, preventing unexpected panics in production. Some discuss the trade-offs of increased verbosity and potential performance overhead compared to using Option
or Result
. One commenter points out a potential issue with using no_panic
in interrupt handlers where unwinding is genuinely unsafe, suggesting careful consideration is needed when applying this technique. Another appreciates the blog post's clarity and the practical example provided. There's also a brief discussion on how the underlying mechanisms of no_panic
work, including its use of static mutable variables and compiler intrinsics.
This project showcases WiFi-controlled RC cars built using ESP32 microcontrollers. The cars utilize readily available components like a generic RC car chassis, an ESP32 development board, and a motor driver. The provided code establishes a web server on the ESP32, allowing control through a simple web interface accessible from any device on the same network. The project aims for simplicity and ease of replication, offering a straightforward way to experiment with building your own connected RC car.
Several Hacker News commenters express enthusiasm for the project, praising its simplicity and the clear documentation. Some discuss potential improvements, like adding features such as obstacle avoidance or autonomous driving using a camera. Others share their own experiences with similar projects, mentioning alternative chassis options or different microcontrollers. A few users suggest using a more robust communication protocol than UDP, highlighting potential issues with range and reliability. The overall sentiment is positive, with many commenters appreciating the project's educational value and potential for fun.
AMD is integrating RF-sampling data converters directly into its Versal adaptive SoCs, starting in 2024. This integration aims to simplify system design and reduce power consumption for applications like aerospace & defense, wireless infrastructure, and test & measurement. By bringing analog-to-digital and digital-to-analog conversion onto the same chip as the processing fabric, AMD eliminates the need for separate ADC/DAC components, streamlining the signal chain and enabling more compact, efficient systems. These new RF-capable Versal SoCs are intended for direct RF sampling, handling frequencies up to 6GHz without requiring intermediary downconversion.
The Hacker News comments express skepticism about the practicality of AMD's integration of RF-sampling data converters directly into their Versal SoCs. Commenters question the real-world performance and noise characteristics achievable with such integration, especially given the potential interference from the digital logic within the SoC. They also raise concerns about the limited information provided by AMD, particularly regarding specific performance metrics and target applications. Some speculate that this integration might be aimed at specific niche markets like phased array radar or electronic warfare, where tight integration is crucial. Others wonder if this move is primarily a strategic play by AMD to compete more directly with Xilinx, now owned by AMD, in areas where Xilinx traditionally held a stronger position. Overall, the sentiment leans toward cautious interest, awaiting more concrete details from AMD before passing judgment.
This blog post details how to leverage the Rust standard library (std
) within applications running on the NuttX Real-Time Operating System (RTOS), a common choice for embedded systems. The author demonstrates a method to link the Rust std
components, specifically write()
for console output, with NuttX's system calls. This allows developers to write Rust code that feels idiomatic, using familiar functions like println!()
, while still targeting the resource-constrained environment of NuttX. The process involves creating a custom target specification JSON file and implementing shim
functions that bridge the gap between the Rust standard library's expectations and the underlying NuttX syscalls. The result is a simplified development experience, enabling more portable and maintainable Rust code on embedded platforms.
Hacker News users discuss the challenges and advantages of using Rust with NuttX. Some express skepticism about the real-world practicality and performance benefits, particularly regarding memory usage and the overhead of Rust's safety features in embedded systems. Others highlight the potential for improved reliability and security that Rust offers, contrasting it with the inherent risks of C in such environments. The complexities of integrating Rust's memory management with NuttX's existing mechanisms are also debated, along with the potential need for careful optimization and configuration to realize Rust's benefits in resource-constrained systems. Several commenters point out that while intriguing, the project is still experimental and requires more maturation before becoming a viable option for production-level embedded development. Finally, the difficulty of porting existing NuttX drivers to Rust and the lack of a robust Rust ecosystem for embedded development are identified as potential roadblocks.
The article argues against blindly using 100nF decoupling capacitors, advocating for a more nuanced approach based on the specific circuit's needs. It explains that decoupling capacitors counteract the inductance of power supply traces, providing a local reservoir of charge for instantaneous current demands. The optimal capacitance value depends on the frequency and magnitude of these demands. While 100nF might be adequate for lower-frequency circuits, higher-speed designs often require a combination of capacitor values targeting different frequency ranges. The article emphasizes using a variety of capacitor sizes, including smaller, high-frequency capacitors placed close to the power pins of integrated circuits to effectively suppress high-frequency noise and ensure stable operation. Ultimately, effective decoupling requires understanding the circuit's characteristics and choosing capacitor values accordingly, rather than relying on a "one-size-fits-all" solution.
Hacker News users discussing the article about decoupling capacitors generally agree with the author's premise that blindly using 100nF capacitors is insufficient. Several commenters share their own experiences and best practices, emphasizing the importance of considering the specific frequency range of noise and choosing capacitors accordingly. Some suggest using a combination of capacitor values to target different frequency bands, while others recommend simulating the circuit to determine the optimal values. There's also discussion around the importance of capacitor placement and the use of ferrite beads for additional filtering. Several users highlight the practical limitations of ideal circuit design and the need to balance performance with cost and complexity. Finally, some commenters point out the article's minor inaccuracies or offer alternative explanations for certain phenomena.
TinyZero is a lightweight, header-only C++ reinforcement learning (RL) library designed for ease of use and educational purposes. It focuses on implementing core RL algorithms like Proximal Policy Optimization (PPO), Deep Q-Network (DQN), and Advantage Actor-Critic (A2C), prioritizing clarity and simplicity over extensive features. The library leverages Eigen for linear algebra and aims to provide a readily understandable implementation for those learning about or experimenting with RL algorithms. It supports both CPU and GPU execution via optional CUDA integration and includes example environments like CartPole and Pong.
Hacker News users discussed TinyZero's impressive training speed and small model size, praising its accessibility for hobbyists and researchers with limited resources. Some questioned the benchmark comparisons, wanting more details on hardware and training methodology to ensure a fair assessment against AlphaZero. Others expressed interest in potential applications beyond Go, such as chess or shogi, and the possibility of integrating techniques from other strong Go AIs like KataGo. The project's clear code and documentation were also commended, making it easy to understand and experiment with. Several commenters shared their own experiences running TinyZero, highlighting its surprisingly good performance despite its simplicity.
This project details the creation of a minimalist 64x4 pixel home computer built using readily available components. It features a custom PCB, an ATmega328P microcontroller, a MAX7219 LED matrix display, and a PS/2 keyboard for input. The computer boasts a simple command-line interface and includes several built-in programs like a text editor, calculator, and games. The design prioritizes simplicity and low cost, aiming to be an educational tool for understanding fundamental computer architecture and programming. The project is open-source, providing schematics, code, and detailed build instructions.
HN commenters generally expressed admiration for the project's minimalism and ingenuity. Several praised the clear documentation and the creator's dedication to simplicity, with some highlighting the educational value of such a barebones system. A few users discussed the limitations of the 4-line display, suggesting potential improvements or alternative uses like a dedicated clock or notification display. Some comments focused on the technical aspects, including the choice of components and the challenges of working with such limited resources. Others reminisced about early computing experiences and similar projects they had undertaken. There was also discussion of the definition of "minimal," comparing this project to other minimalist computer designs.
VexRiscv is a highly configurable 32-bit RISC-V CPU implementation written in SpinalHDL, specifically designed for FPGA integration. Its modular and customizable architecture allows developers to tailor the CPU to their specific application needs, including features like caches, MMU, multipliers, and various peripherals. This flexibility offers a balance between performance and resource utilization, making it suitable for a wide range of embedded systems. The project provides a comprehensive ecosystem with simulation tools, examples, and pre-configured configurations, simplifying the process of integrating and evaluating the CPU.
Hacker News users discuss VexRiscv's impressive performance and configurability, highlighting its usefulness for FPGA projects. Several commenters praise its clear documentation and ease of customization, with one mentioning successful integration into their own projects. The minimalist design and the ability to tailor it to specific needs are seen as major advantages. Some discussion revolves around comparisons with other RISC-V implementations, particularly regarding performance and resource utilization. There's also interest in the SpinalHDL language used to implement VexRiscv, with some inquiries about its learning curve and benefits over traditional HDLs like Verilog.
A seemingly innocuous USB-C to Ethernet adapter, purchased from Amazon, was found to contain a sophisticated implant capable of malicious activity. This implant included a complete system with a processor, memory, and network connectivity, hidden within the adapter's casing. Upon plugging it in, the adapter established communication with a command-and-control server, potentially enabling remote access, data exfiltration, and other unauthorized actions on the connected computer. The author meticulously documented the hardware and software components of the implant, revealing its advanced capabilities and stealthy design, highlighting the potential security risks of seemingly ordinary devices.
Hacker News users discuss the practicality and implications of the "evil" RJ45 dongle detailed in the article. Some question the dongle's true malicious intent, suggesting it might be a poorly designed device for legitimate (though obscure) networking purposes like hotel internet access. Others express fascination with the hardware hacking and reverse-engineering process. Several commenters discuss the potential security risks of such devices, particularly in corporate environments, and the difficulty of detecting them. There's also debate on the ethics of creating and distributing such hardware, with some arguing that even proof-of-concept devices can be misused. A few users share similar experiences encountering unexpected or unexplained network behavior, highlighting the potential for hidden hardware compromises.
This guide provides a comprehensive introduction to BCPL programming on the Raspberry Pi. It covers setting up a BCPL environment, basic syntax and data types, control flow, procedures, and input/output operations. The guide also delves into more advanced topics like separate compilation, creating libraries, and interfacing with the operating system. It includes numerous examples and exercises, making it suitable for both beginners and those with prior programming experience looking to explore BCPL. The document emphasizes BCPL's simplicity and efficiency, particularly its suitability for low-level programming tasks on resource-constrained systems like the Raspberry Pi.
HN commenters expressed interest in BCPL due to its historical significance as a predecessor to C and its influence on Go. Some recalled using BCPL in the past, highlighting its simplicity and speed, and contrasting its design with C. A few users discussed specific aspects of the document, such as the choice of Raspberry Pi and the use of pre-built binaries, while others lamented the lack of easily accessible BCPL resources today. Several pointed out the educational value of the guide, particularly for understanding compiler construction and the evolution of programming languages. Overall, the comments reflected a mix of nostalgia, curiosity, and appreciation for BCPL's role in computing history.
The author's Chumby 8, a vintage internet appliance, consistently ran at 100% CPU usage due to a kernel bug affecting the way the CPU's clock frequency was handled. The original kernel expected a constant clock speed, but the Chumby's CPU dynamically scaled its frequency. This discrepancy caused the kernel's timekeeping functions to malfunction, leading to a busy loop that consumed all available CPU cycles. Upgrading to a newer kernel, compiled with the correct configuration for a variable clock speed, resolved the issue and brought CPU usage back to normal levels.
The Hacker News comments primarily focus on the surprising complexity and challenges involved in the author's quest to upgrade the kernel of a Chumby 8. Several commenters expressed admiration for the author's deep dive into the embedded system's inner workings, with some jokingly comparing it to a software archaeological expedition. There's also discussion about the prevalence of inefficient browser implementations on embedded devices, contributing to high CPU usage. Some suggest alternative approaches, like using a lightweight browser or a different operating system entirely. A few commenters shared their own experiences with similar embedded devices and the difficulties in optimizing their performance. The overall sentiment reflects appreciation for the author's detailed troubleshooting process and the interesting technical insights it provides.
The openai-realtime-embedded-sdk allows developers to build AI assistants that run directly on microcontrollers. This SDK bridges the gap between OpenAI's powerful language models and resource-constrained embedded devices, enabling on-device inference without relying on cloud connectivity or constant internet access. It achieves this through quantization and compression techniques that shrink model size, allowing them to fit and execute on microcontrollers. This opens up possibilities for creating intelligent devices with enhanced privacy, lower latency, and offline functionality.
Hacker News users discussed the practicality and limitations of running large language models (LLMs) on microcontrollers. Several commenters pointed out the significant resource constraints, questioning the feasibility given the size of current LLMs and the limited memory and processing power of microcontrollers. Some suggested potential use cases where smaller, specialized models might be viable, such as keyword spotting or limited voice control. Others expressed skepticism, arguing that the overhead, even with quantization and compression, would be too high. The discussion also touched upon alternative approaches like using microcontrollers as interfaces to cloud-based LLMs and the potential for future hardware advancements to bridge the gap. A few users also inquired about the specific models supported and the level of performance achievable on different microcontroller platforms.
Researchers have developed a new transistor that could significantly improve edge computing by enabling more efficient hardware implementations of fuzzy logic. This "ferroelectric FinFET" transistor can be reconfigured to perform various fuzzy logic operations, eliminating the need for complex digital circuits typically required. This simplification leads to smaller, faster, and more energy-efficient fuzzy logic hardware, ideal for edge devices with limited resources. The adaptable nature of the transistor allows it to handle the uncertainties and imprecise information common in real-world applications, making it well-suited for tasks like sensor processing, decision-making, and control systems in areas such as robotics and the Internet of Things.
Hacker News commenters expressed skepticism about the practicality of the reconfigurable fuzzy logic transistor. Several questioned the claimed benefits, particularly regarding power efficiency. One commenter pointed out that fuzzy logic usually requires more transistors than traditional logic, potentially negating any power savings. Others doubted the applicability of fuzzy logic to edge computing tasks in the first place, citing the prevalence of well-established and efficient algorithms for those applications. Some expressed interest in the technology, but emphasized the need for more concrete results beyond simulations. The overall sentiment was cautious optimism tempered by a demand for further evidence to support the claims.
Summary of Comments ( 3 )
https://news.ycombinator.com/item?id=42989923
HN users discuss Colinux, focusing on its unique approach of running Linux within a single Windows process, contrasting it with virtual machines and WSL. Several express interest in its lightweight nature and potential performance benefits, especially for resource-constrained environments or specific use-cases like embedded systems. Some question its practicality compared to more established solutions like Docker or WSL, while others highlight the security implications of running a full kernel within a single process. The lack of recent updates to the project is also a recurring concern, leading to speculation about its current status and maintainability. The ingenuity of the approach is generally acknowledged, even if its practical application remains a point of debate.
The Hacker News post titled "Linux as co-operative Windows process" (https://news.ycombinator.com/item?id=42989923) has several comments discussing the coLinux project, which allows running a Linux kernel as a user-mode process under Windows.
Several commenters express nostalgia for coLinux, recalling its usefulness in the past, especially before the widespread availability of Windows Subsystem for Linux (WSL). They mention using it for tasks like running Linux servers or development environments on Windows machines. One user highlights its importance in the pre-virtualization era, providing a lightweight Linux environment without the overhead of a full virtual machine.
Performance is a recurring theme. While some users remember coLinux being reasonably performant for certain tasks, others recall significant performance limitations, especially regarding disk I/O. The cooperative multitasking nature of coLinux, as pointed out by some comments, meant that a heavy load in the Linux instance could impact the responsiveness of the Windows host.
The discussion touches on the technical aspects of coLinux, including its use of the coLinux kernel and the challenges of managing hardware access from a user-mode process. The limitations of cooperative multitasking are mentioned, with users pointing out the potential for one process to monopolize resources and negatively affect the entire system.
Comparison with other virtualization solutions like VirtualBox and VMware is also made. Commenters note that while coLinux might have been attractive in its time due to its lighter weight, full virtualization offers better isolation and performance in most scenarios. The introduction of WSL is also mentioned as a more modern and integrated solution for running Linux on Windows.
A few comments delve into the security implications of running a kernel in user mode, with users expressing concerns about potential vulnerabilities.
Overall, the comments paint a picture of coLinux as a historically significant tool that filled a need before better solutions became available. While praised for its ingenuity and usefulness in specific situations, the comments also acknowledge its inherent limitations and the reasons why it has largely been superseded by technologies like WSL and full virtualization.