This blog post explores the architecture and evolution of Darwin, Apple's open-source operating system foundation, and its XNU kernel. It explains how Darwin, built upon the Mach microkernel, incorporates components from BSD and Apple's own I/O Kit. The post details the hybrid kernel approach of XNU, combining the message-passing benefits of a microkernel with the performance advantages of a monolithic kernel. It discusses key XNU subsystems like the process manager, memory manager, file system, and networking stack, highlighting the interplay between Mach and BSD layers. The post also traces Darwin's history, from its NeXTSTEP origins through its evolution into macOS, iOS, watchOS, and tvOS, emphasizing the platform's adaptability and performance.
InitWare is a portable init system inspired by systemd, designed to function across multiple operating systems, including Linux, FreeBSD, NetBSD, and OpenBSD. It aims to provide a familiar systemd-like experience and API on these platforms while remaining lightweight and configurable. The project utilizes a combination of C and POSIX sh for portability and reimplements core systemd functionalities like service management, device management, and login management. InitWare seeks to offer a viable alternative to traditional init systems on BSDs and a more streamlined and potentially faster option compared to full systemd on Linux.
Hacker News users discussed InitWare, a portable systemd fork, with a mix of skepticism and curiosity. Some questioned the value proposition, given the maturity and ubiquity of systemd, wondering if the project addressed a real need or was a solution in search of a problem. Others expressed concerns about maintaining compatibility across different operating systems and the potential for fragmentation. However, some commenters were intrigued by the possibility of a more lightweight and portable init system, particularly for embedded systems or specialized use cases where systemd might be overkill. Several users also inquired about specific technical details, like the handling of cgroups and service management, demonstrating a genuine interest in the project's approach. The overall sentiment leaned towards cautious observation, with many waiting to see if InitWare could carve out a niche or offer tangible benefits over existing solutions.
The Ncurses library provides an API for creating text-based user interfaces in a terminal-independent manner. It handles screen painting, input, and window management, abstracting away low-level details like terminal capabilities. Ncurses builds upon the older Curses library, offering enhancements and broader compatibility. Key features include window creation and manipulation, formatted output with color and attributes, handling keyboard and mouse input, and supporting various terminal types. The library simplifies tasks like creating menus, dialog boxes, and other interactive elements commonly found in text-based applications. By using Ncurses, developers can write portable code that works across different operating systems and terminal emulators without modification.
Hacker News users discussing the ncurses intro document generally praised it as a good resource, especially for beginners. Some appreciated the historical context provided, while others highlighted the clarity and practicality of the tutorial. One commenter mentioned using it to learn ncurses for a project, showcasing its real-world applicability. Several comments pointed out modern alternatives like FTXUI (C++) and blessed-contrib (JS), acknowledging ncurses' age but also its continued relevance and wide usage in existing tools. A few users discussed the benefits of text-based UIs, citing speed, remote accessibility, and lower resource requirements.
This blog post presents a revised and more robust method for invoking raw OpenBSD system calls directly from C code, bypassing the standard C library. It improves upon a previous example by handling variable-length argument lists and demonstrating how to package those arguments correctly for system calls. The core improvement involves using assembly code to dynamically construct the system call arguments on the stack and then execute the syscall
instruction. This allows for a more general and flexible approach compared to hardcoding argument handling for each specific system call. The provided code example demonstrates this technique with the getpid()
system call.
Several Hacker News commenters discuss the impracticality of the raw syscall demo, questioning its real-world usefulness and emphasizing that libraries like libc exist for a reason. Some appreciated the technical depth and the exploration of low-level system interaction, viewing it as an interesting educational exercise. One commenter suggested the demo could be useful for specialized scenarios like writing a dynamic linker or a microkernel. There was also a brief discussion about the performance implications and the idea that bypassing libc wouldn't necessarily result in significant speed improvements, and might even be slower in some cases. Some users also debated the portability of the code and suggested alternative methods for achieving similar results.
OpenBSD has contributed significantly to operating system security and development through proactive approaches. These include innovations like memory safety mitigations such as W^X (preventing simultaneous write and execute permissions on memory pages) and pledge() (restricting system calls available to a process), advanced cryptography and randomization techniques, and extensive code auditing practices. The project also champions portable and reusable code, evident in the creation of OpenSSH, OpenNTPD, and other tools, which are now widely used across various platforms. Furthermore, OpenBSD emphasizes careful documentation and user-friendly features like the package management system, highlighting a commitment to both security and usability.
Hacker News users discuss OpenBSD's historical focus on proactive security, praising its influence on other operating systems. Several commenters highlight OpenBSD's pledge ("secure by default") and the depth of its code audits, contrasting it favorably with Linux's reactive approach. Some debate the practicality of OpenBSD for everyday use, citing hardware compatibility challenges and a smaller software ecosystem. Others acknowledge these limitations but emphasize OpenBSD's value as a learning resource and a model for secure coding practices. The maintainability of its codebase and the project's commitment to simplicity are also lauded. A few users mention specific innovations like OpenSSH and CARP, while others appreciate the project's consistent philosophy and long-term vision.
The blog post details how to set up Kleene, a lightweight container management system, on FreeBSD. It emphasizes Kleene's simplicity and ease of use compared to larger, more complex alternatives like Kubernetes. The guide walks through installing Kleene, configuring a network bridge for container communication, and deploying a sample Nginx container. It also covers building custom container images with img
and highlights Kleene's ability to manage persistent storage volumes, showcasing its suitability for self-hosting applications on FreeBSD servers. The post concludes by pointing to Kleene's potential as a practical container solution for users seeking a less resource-intensive option than Docker or Kubernetes.
HN commenters generally express interest in Kleene and its potential, particularly for FreeBSD users seeking lighter-weight alternatives to Docker. Some highlight its jail-based approach as a security advantage. Several commenters discuss the complexities of container management and the trade-offs between different tools, with some suggesting that a simpler approach might be preferable for certain use cases. One commenter notes the difficulty in finding clear, up-to-date documentation for FreeBSD containerization, praising the linked article for addressing this gap. There's also a brief thread discussing the benefits of ZFS for container storage. Overall, the comments paint Kleene as a promising tool worth investigating, especially for those already working within the FreeBSD ecosystem.
Summary of Comments ( 111 )
https://news.ycombinator.com/item?id=43597778
Hacker News users generally praised the article for its clarity and depth in explaining a complex topic. Several commenters with kernel development experience validated the information presented, noting its accuracy and helpfulness for understanding the evolution of XNU. Some discussion arose around specific architectural choices made by Apple, including the Mach microkernel and its interaction with the BSD environment. One commenter highlighted the performance benefits of the hybrid kernel approach, while others expressed interest in the challenges of maintaining such a system. A few users also pointed out areas where the article could be expanded, such as delving further into I/O Kit details and exploring the security implications of the XNU architecture.
The Hacker News post discussing the "Apple’s Darwin OS and XNU Kernel Deep Dive" blog post has a moderate number of comments, offering various perspectives and additional information related to the topic.
Several commenters praised the original blog post for its clarity and comprehensiveness. One user described it as a "great writeup" and expressed appreciation for the author's effort in explaining a complex topic in an accessible manner. Another commenter highlighted the value of the historical context provided in the blog post, emphasizing its contribution to a deeper understanding of the XNU kernel's evolution.
A significant portion of the discussion revolved around Mach, the microkernel underlying XNU. Commenters delved into the technical aspects of Mach, discussing its design principles, its role within XNU, and its relationship to other operating systems. One user recalled their experience working with Mach at Carnegie Mellon University, offering personal anecdotes and insights into the challenges and complexities associated with microkernel-based systems. Another commenter compared and contrasted Mach with other microkernels, highlighting the unique characteristics and trade-offs of each approach. This technical discussion provided valuable context for understanding the XNU kernel's architecture and its historical development.
Beyond the technical details, some comments explored the practical implications of XNU's design. One user raised concerns about the security implications of using a hybrid kernel, questioning the effectiveness of the microkernel approach in mitigating vulnerabilities. Another comment touched on the performance characteristics of XNU, speculating on the potential impact of its architecture on the overall responsiveness and efficiency of macOS.
Finally, some commenters shared additional resources and links related to Darwin and XNU. These resources included official documentation, technical papers, and open-source projects, providing further avenues for exploring the topic in greater depth. One user specifically mentioned the XNU source code, encouraging others to delve into the codebase to gain a more comprehensive understanding of the kernel's inner workings.
In summary, the Hacker News comments offer a blend of praise for the original blog post, in-depth technical discussions about Mach and XNU, practical considerations regarding security and performance, and pointers to additional resources. While not an overwhelmingly large number of comments, they provide a valuable supplement to the blog post, offering diverse perspectives and enriching the overall understanding of the topic.