DuckDB now offers preview support for querying data directly in Amazon S3 via a new extension. This allows users to create and query tables stored as Parquet, CSV, or JSON files on S3 without downloading data, leveraging S3's scalability and DuckDB's analytical capabilities. The extension utilizes the httpfs
extension for access and supports various S3-specific features like AWS credentials and different regions. While still experimental, this functionality opens the door to building efficient "lakehouse" architectures directly on S3 using DuckDB.
Polars, known for its fast DataFrame library, is developing Polars Cloud, a platform designed to seamlessly run Polars code anywhere. It aims to abstract away infrastructure complexities, enabling users to execute Polars workloads on various backends like their local machine, a cluster, or serverless environments without code changes. Polars Cloud will feature a unified API, intelligent query planning and optimization, and efficient data transfer. This will allow users to scale their data processing effortlessly, from laptops to massive datasets, all while leveraging Polars' performance advantages. The platform will also incorporate advanced features like data versioning and collaboration tools, fostering better teamwork and reproducibility.
Hacker News users generally expressed excitement about Polars Cloud, praising the project's ambition and the potential of combining Polars' performance with distributed computing. Several commenters highlighted the cleverness of leveraging existing cloud infrastructure like DuckDB and Apache Arrow. Some questioned the business model's viability, particularly regarding competition with established cloud providers and the potential for vendor lock-in. Others raised technical concerns about query planning across distributed systems and the challenges of handling large datasets efficiently. A few users discussed alternative approaches, such as using Dask or Spark with Polars. Overall, the sentiment was positive, with many eager to see how Polars Cloud evolves.
The blog post argues Apache Iceberg is poised to become a foundational technology in the modern data stack, similar to how Hadoop was for the previous generation. Iceberg provides a robust, open table format that addresses many shortcomings of directly querying data lake files. Its features, including schema evolution, hidden partitioning, and time travel, enable reliable and performant data analysis across various engines like Spark, Trino, and Flink. This standardization simplifies data management and facilitates better data governance, potentially unifying the currently fragmented modern data stack. Just as Hadoop provided a base layer for big data processing, Iceberg aims to be the underlying table format that different data tools can build upon.
HN users generally disagree with the premise that Iceberg is the "Hadoop of the modern data stack." Several commenters point out that Iceberg solves different problems than Hadoop, focusing on table formats and metadata management rather than distributed compute. Some suggest that tools like dbt are closer to filling the Hadoop role in orchestrating data transformations. Others argue that the modern data stack is too fragmented for any single tool to dominate like Hadoop once did. A few commenters express skepticism about Iceberg's long-term relevance, while others praise its capabilities and adoption by major companies. The comparison to Hadoop is largely seen as inaccurate and unhelpful.
DeepSeek's smallpond extends DuckDB, the popular in-process analytical database, with distributed computing capabilities. It leverages a shared-nothing architecture where each node holds a portion of the data, allowing for parallel processing of queries across a cluster. Smallpond introduces a distributed query planner that optimizes query execution by distributing tasks and aggregating results efficiently. This empowers DuckDB to handle larger-than-memory datasets and significantly improves performance for complex analytical workloads. The project aims to make distributed computing accessible within the familiar DuckDB environment, retaining its ease of use and performance characteristics for larger-scale data analysis.
Hacker News commenters generally expressed excitement about the potential of combining DeepSeek's distributed computing capabilities with DuckDB's analytical power. Some questioned the performance implications and overhead of such a distributed setup, particularly concerning query planning and data transfer. Others raised concerns about the choice of Raft consensus, suggesting alternative distributed consensus algorithms might be more performant. Several users highlighted the value proposition for data lakes, allowing direct querying without complex ETL pipelines. The discussion also touched on the competitive landscape, comparing the approach to existing solutions like Presto and Spark, with some speculating on potential acquisition scenarios. A few commenters shared their positive experiences with DuckDB's speed and ease of use, further reinforcing the appeal of this integration. Finally, there was curiosity around the specifics of DeepSeek's technology and its impact on DuckDB's licensing.
Apache Iceberg is an open table format for massive analytic datasets. It brings modern data management capabilities like ACID transactions, schema evolution, hidden partitioning, and time travel to big data, while remaining performant on petabyte scale. Iceberg supports various data file formats like Parquet, Avro, and ORC, and integrates with popular big data engines including Spark, Trino, Presto, Flink, and Hive. This allows users to access and manage their data consistently across different tools and provides a unified, high-performance data lakehouse experience. It simplifies complex data operations and ensures data reliability and correctness for large-scale analytical workloads.
Hacker News users discuss Apache Iceberg's utility and compare it to other data lake table formats. Several commenters praise Iceberg's schema evolution features, particularly its handling of schema changes without rewriting the entire dataset. Some express concern about the complexity of implementing Iceberg, while others highlight the benefits of its open-source nature and active community. Performance comparisons with Hudi and Delta Lake are also brought up, with some users claiming Iceberg offers better performance for certain workloads while others argue it lags behind in features like time travel. A few users also discuss Iceberg's integration with various query engines and data warehousing solutions. Finally, the conversation touches on the potential for Iceberg to become a standard table format for data lakes.
Summary of Comments ( 33 )
https://news.ycombinator.com/item?id=43401421
Hacker News commenters generally expressed excitement about DuckDB's new S3 integration, praising its speed, simplicity, and potential to disrupt the data lakehouse space. Several users shared their positive experiences using DuckDB, highlighting its performance advantages compared to other query engines like Presto and Athena. Some raised concerns about the potential vendor lock-in with S3, suggesting that supporting alternative storage solutions would be beneficial. Others discussed the limitations of Parquet files for analytical workloads, and how DuckDB might address those issues. A few commenters pointed out the importance of robust schema evolution and data governance features for enterprise adoption. The overall sentiment was very positive, with many seeing this as a significant step forward for data analysis on cloud storage.
The Hacker News post "Preview: Amazon S3 Tables and Lakehouse in DuckDB" generated a moderate number of comments discussing the announcement of DuckDB's ability to query data directly in Amazon S3, functioning similarly to a lakehouse. Several commenters expressed excitement and approval for this development.
A recurring theme in the comments is the praise for DuckDB's impressive speed and efficiency. Users shared anecdotal experiences of DuckDB outperforming other database solutions, particularly for analytical queries on parquet files. Some specifically highlighted its superiority over Presto and Athena in certain scenarios, mentioning significantly faster query times. This performance advantage seems to be a key driver of the positive reception towards the S3 integration.
Another point of discussion revolves around the practical implications of this feature. Commenters discussed the benefits of being able to analyze data directly in S3 without needing to move or transform it. This is seen as a major advantage for data exploration, prototyping, and ad-hoc analysis. The convenience and cost-effectiveness of querying data in-place were emphasized by several users.
Several comments delve into technical aspects, comparing DuckDB's approach to other lakehouse solutions like Databricks and Apache Iceberg. The discussion touched upon the differences in architecture and the trade-offs between performance and features. Some commenters speculated about the potential use cases for DuckDB's S3 integration, mentioning applications in data science, analytics, and log processing.
While the overall sentiment is positive, some comments also raised questions and concerns. One commenter inquired about the maturity and stability of the S3 integration, as it is still in preview. Another user pointed out the limitations of DuckDB in handling highly concurrent workloads compared to distributed query engines. Furthermore, discussions emerged around the security implications of accessing S3 data directly and the need for proper authentication and authorization mechanisms.
Finally, some comments explored the potential impact of this feature on the data warehousing and lakehouse landscape. The ability of DuckDB to query S3 data efficiently could potentially disrupt existing solutions and offer a more streamlined and cost-effective approach to data analytics. Some speculated on the future development of DuckDB and its potential to become a major player in the cloud data ecosystem.