DuckDB now offers preview support for querying data directly in Amazon S3 via a new extension. This allows users to create and query tables stored as Parquet, CSV, or JSON files on S3 without downloading data, leveraging S3's scalability and DuckDB's analytical capabilities. The extension utilizes the httpfs
extension for access and supports various S3-specific features like AWS credentials and different regions. While still experimental, this functionality opens the door to building efficient "lakehouse" architectures directly on S3 using DuckDB.
DuckDB has released a local web UI for interacting with the database. This UI, launched by running .open
in the command-line interface, provides a visual interface for browsing tables, executing queries, and visualizing query results as charts. It aims to simplify data exploration and analysis within DuckDB, making it more accessible to users who prefer a graphical interface over a purely command-line driven experience. The UI is built with web technologies and runs entirely locally, requiring no external dependencies or internet connection. This enhances security and privacy by keeping data processing within the user's machine.
Hacker News users generally expressed enthusiasm for the DuckDB UI, praising its ease of use and potential for broader adoption. Several commenters compared it favorably to other database tools, highlighting its intuitive interface as a significant advantage over more complex alternatives. Some pointed out the convenience of having a visual interface for exploring data locally, especially for tasks like quick data analysis or debugging. The ability to visualize query plans and monitor performance metrics was also lauded as a valuable feature. A few users discussed potential use cases, including integrating DuckDB with other tools and using the UI for educational purposes. Some expressed hope for future features, such as support for charting and plugins.
DeepSeek's smallpond extends DuckDB, the popular in-process analytical database, with distributed computing capabilities. It leverages a shared-nothing architecture where each node holds a portion of the data, allowing for parallel processing of queries across a cluster. Smallpond introduces a distributed query planner that optimizes query execution by distributing tasks and aggregating results efficiently. This empowers DuckDB to handle larger-than-memory datasets and significantly improves performance for complex analytical workloads. The project aims to make distributed computing accessible within the familiar DuckDB environment, retaining its ease of use and performance characteristics for larger-scale data analysis.
Hacker News commenters generally expressed excitement about the potential of combining DeepSeek's distributed computing capabilities with DuckDB's analytical power. Some questioned the performance implications and overhead of such a distributed setup, particularly concerning query planning and data transfer. Others raised concerns about the choice of Raft consensus, suggesting alternative distributed consensus algorithms might be more performant. Several users highlighted the value proposition for data lakes, allowing direct querying without complex ETL pipelines. The discussion also touched on the competitive landscape, comparing the approach to existing solutions like Presto and Spark, with some speculating on potential acquisition scenarios. A few commenters shared their positive experiences with DuckDB's speed and ease of use, further reinforcing the appeal of this integration. Finally, there was curiosity around the specifics of DeepSeek's technology and its impact on DuckDB's licensing.
Smallpond is a lightweight Python framework designed for efficient data processing using DuckDB and the Apache Arrow-based filesystem 3FS. It simplifies common data tasks like loading, transforming, and analyzing datasets by leveraging the performance of DuckDB for querying and the flexibility of 3FS for storage. Smallpond aims to provide a convenient and scalable solution for working with various data formats, including Parquet, CSV, and JSON, while abstracting away the complexities of data management and enabling users to focus on their analysis. It offers a Pandas-like API for familiarity and ease of use, promoting a more streamlined workflow for data scientists and engineers.
Hacker News commenters generally expressed interest in Smallpond, praising its simplicity and the potential combination of DuckDB and fsspec. Several noted the clever use of these existing tools to create a lightweight yet powerful framework. Some questioned the long-term viability of relying solely on DuckDB for complex ETL pipelines, citing performance limitations for very large datasets or specific transformation tasks. Others discussed the benefits of using Polars or DataFusion as alternative processing engines. A few commenters also suggested potential improvements, like adding support for streaming data ingestion and more sophisticated data validation features. Overall, the sentiment was positive, with many seeing Smallpond as a useful tool for certain data processing scenarios.
The blog post details how Definite integrated concurrent read/write functionality into DuckDB using Apache Arrow Flight. Previously, DuckDB only supported single-writer, multi-reader access. By leveraging Flight's DoPut and DoGet streams, they enabled multiple clients to simultaneously read and write to a DuckDB database. This involved creating a custom Flight server within DuckDB, utilizing transactions to manage concurrency and ensure data consistency. The post highlights performance improvements achieved through this integration, particularly for analytical workloads involving large datasets, and positions it as a key advancement for interactive data analysis and real-time applications. They open-sourced this integration, making concurrent DuckDB access available to a wider audience.
Hacker News users discussed DuckDB's new concurrent read/write feature via Arrow Flight. Several praised the project's rapid progress and innovative approach. Some questioned the performance implications of using Flight for this purpose, particularly regarding overhead. Others expressed interest in specific use cases, such as combining DuckDB with other data tools and querying across distributed datasets. The potential for improved performance with columnar data compared to row-based systems was also highlighted. A few users sought clarification on technical aspects, like the level of concurrency achieved and how it compares to other databases.
Summary of Comments ( 33 )
https://news.ycombinator.com/item?id=43401421
Hacker News commenters generally expressed excitement about DuckDB's new S3 integration, praising its speed, simplicity, and potential to disrupt the data lakehouse space. Several users shared their positive experiences using DuckDB, highlighting its performance advantages compared to other query engines like Presto and Athena. Some raised concerns about the potential vendor lock-in with S3, suggesting that supporting alternative storage solutions would be beneficial. Others discussed the limitations of Parquet files for analytical workloads, and how DuckDB might address those issues. A few commenters pointed out the importance of robust schema evolution and data governance features for enterprise adoption. The overall sentiment was very positive, with many seeing this as a significant step forward for data analysis on cloud storage.
The Hacker News post "Preview: Amazon S3 Tables and Lakehouse in DuckDB" generated a moderate number of comments discussing the announcement of DuckDB's ability to query data directly in Amazon S3, functioning similarly to a lakehouse. Several commenters expressed excitement and approval for this development.
A recurring theme in the comments is the praise for DuckDB's impressive speed and efficiency. Users shared anecdotal experiences of DuckDB outperforming other database solutions, particularly for analytical queries on parquet files. Some specifically highlighted its superiority over Presto and Athena in certain scenarios, mentioning significantly faster query times. This performance advantage seems to be a key driver of the positive reception towards the S3 integration.
Another point of discussion revolves around the practical implications of this feature. Commenters discussed the benefits of being able to analyze data directly in S3 without needing to move or transform it. This is seen as a major advantage for data exploration, prototyping, and ad-hoc analysis. The convenience and cost-effectiveness of querying data in-place were emphasized by several users.
Several comments delve into technical aspects, comparing DuckDB's approach to other lakehouse solutions like Databricks and Apache Iceberg. The discussion touched upon the differences in architecture and the trade-offs between performance and features. Some commenters speculated about the potential use cases for DuckDB's S3 integration, mentioning applications in data science, analytics, and log processing.
While the overall sentiment is positive, some comments also raised questions and concerns. One commenter inquired about the maturity and stability of the S3 integration, as it is still in preview. Another user pointed out the limitations of DuckDB in handling highly concurrent workloads compared to distributed query engines. Furthermore, discussions emerged around the security implications of accessing S3 data directly and the need for proper authentication and authorization mechanisms.
Finally, some comments explored the potential impact of this feature on the data warehousing and lakehouse landscape. The ability of DuckDB to query S3 data efficiently could potentially disrupt existing solutions and offer a more streamlined and cost-effective approach to data analytics. Some speculated on the future development of DuckDB and its potential to become a major player in the cloud data ecosystem.