This blog post explains why the author chose C to build their personal website. Motivated by a desire for a fun, challenging project and greater control over performance and resource usage, they opted against higher-level frameworks. While acknowledging C's complexity and development time, the author highlights the benefits of minimal dependencies, small executable size, and the learning experience gained. Ultimately, the decision was driven by personal preference and the satisfaction derived from crafting a website from scratch using a language they enjoy.
The blog post details the author's experience porting Rust to the RockPro64 (RP2350) single-board computer. They successfully brought up a minimal Rust environment, including core libraries, allowing basic "Hello, world!" functionality and interaction with GPIO pins. The process involved building a custom cross-compilation toolchain based on a pre-built Debian image, navigating architectural differences like the lack of an MMU, and implementing necessary drivers. While challenging, this achievement lays the groundwork for more complex Rust development on the RP2350, potentially opening doors for embedded systems applications.
HN commenters generally express enthusiasm for Rust's increasing viability on embedded platforms, particularly the RP2040. Several users discuss the benefits of Rust's memory safety and performance in this context, comparing it favorably to C/C++. Some point out the challenges of working with Rust on resource-constrained devices, like managing memory allocation and dealing with abstractions that can add overhead. A few commenters also mention specific crates like rp-pico
and embassy
, highlighting their usefulness for embedded Rust development on the RP2040. There's also discussion around build times, tooling, and the learning curve associated with Rust, with some suggesting that the ecosystem is still maturing but rapidly improving. Finally, some users share their own experiences and projects using Rust on embedded systems.
This blog post details setting up a bare-metal Kubernetes cluster on NixOS with Nvidia GPU support, focusing on simplicity and declarative configuration. It leverages NixOS's package management for consistent deployments across nodes and uses the toolkit's modularity to manage complex dependencies like CUDA drivers and container toolkits. The author emphasizes using separate NixOS modules for different cluster components—Kubernetes, GPU drivers, and container runtimes—allowing for easier maintenance and upgrades. The post guides readers through configuring the systemd unit for the Nvidia container toolkit, setting up the necessary kernel modules, and ensuring proper access for Kubernetes to the GPUs. Finally, it demonstrates deploying a GPU-enabled pod as a verification step.
Hacker News users discussed various aspects of running Nvidia GPUs on a bare-metal NixOS Kubernetes cluster. Some questioned the necessity of NixOS for this setup, suggesting that its complexity might outweigh its benefits, especially for smaller clusters. Others countered that NixOS provides crucial advantages for reproducible deployments and managing driver dependencies, particularly valuable in research and multi-node GPU environments. Commenters also explored alternatives like using Ansible for provisioning and debated the performance impact of virtualization. A few users shared their personal experiences, highlighting both successes and challenges with similar setups, including issues with specific GPU models and kernel versions. Several commenters expressed interest in the author's approach to network configuration and storage management, but the author didn't elaborate on these aspects in the original post.
Snowdrop OS is a hobby operating system written entirely in assembly language for x86-64 processors. The project aims to be a minimal, educational platform showcasing fundamental OS concepts. Currently, it supports booting into 32-bit protected mode, basic memory management with paging, printing to the screen, and keyboard input. The author's goal is to progressively implement more advanced features like multitasking, a filesystem, and eventually user mode, while keeping the code clean and understandable.
HN commenters express admiration for the author's dedication and technical achievement in creating an OS from scratch in assembly. Several discuss the challenges and steep learning curve involved in such a project, with some sharing their own experiences with OS development. Some question the practical applications of the OS, given its limited functionality, while others see value in it as a learning exercise. The use of assembly language is a significant point of discussion, with some praising the low-level control it provides and others suggesting higher-level languages would be more efficient for development. The minimalist nature of the OS and its focus on core functionalities are also highlighted. A few commenters offer suggestions for improvements, such as implementing a simple filesystem or exploring different architectures. Overall, the comments reflect a mix of appreciation for the technical feat, curiosity about its purpose, and discussion of the trade-offs involved in such a project.
This blog post explores using NetBSD's native graphics capabilities without relying on the X Window System (X11). The author demonstrates direct framebuffer access using libraries like wscons and libcaca for simple graphics and text output, highlighting the performance benefits and reduced complexity compared to a full X11 setup. This approach is particularly advantageous for embedded or resource-constrained systems, or situations where a minimal graphical interface suffices. The post details setting up a NetBSD virtual machine, configuring wscons, and provides code examples using libcaca to draw shapes and text directly to the screen, showcasing the simplicity and directness of this method.
HN commenters largely praised the elegance and simplicity of NetBSD's native graphics stack, contrasting it favorably with the complexity of X11. Several pointed out the historical context, noting that this approach harkens back to simpler times and offers a refreshing alternative to the bloat of modern desktop environments. Some expressed interest in exploring NetBSD specifically because of this feature. A few commenters questioned the practicality for everyday use, citing the limited software ecosystem that supports it. Others discussed the performance implications, with some suggesting it could be faster than X11 in certain scenarios. There was also discussion of similar approaches in other operating systems, such as Framebuffer and Wayland.
This guide provides a comprehensive introduction to BCPL programming on the Raspberry Pi. It covers setting up a BCPL environment, basic syntax and data types, control flow, procedures, and input/output operations. The guide also delves into more advanced topics like separate compilation, creating libraries, and interfacing with the operating system. It includes numerous examples and exercises, making it suitable for both beginners and those with prior programming experience looking to explore BCPL. The document emphasizes BCPL's simplicity and efficiency, particularly its suitability for low-level programming tasks on resource-constrained systems like the Raspberry Pi.
HN commenters expressed interest in BCPL due to its historical significance as a predecessor to C and its influence on Go. Some recalled using BCPL in the past, highlighting its simplicity and speed, and contrasting its design with C. A few users discussed specific aspects of the document, such as the choice of Raspberry Pi and the use of pre-built binaries, while others lamented the lack of easily accessible BCPL resources today. Several pointed out the educational value of the guide, particularly for understanding compiler construction and the evolution of programming languages. Overall, the comments reflected a mix of nostalgia, curiosity, and appreciation for BCPL's role in computing history.
Summary of Comments ( 32 )
https://news.ycombinator.com/item?id=43526058
Hacker News users generally praised the author's technical skills and the site's performance, with several expressing admiration for the clean code and minimalist approach. Some questioned the practicality and maintainability of using C for a website, particularly regarding long-term development and potential security risks. Others discussed the benefits of learning C and low-level programming, while some debated the performance advantages compared to other languages and frameworks. A few users shared their own experiences with similar projects and alternative approaches to achieving high performance. A significant point of discussion was the lack of server-side rendering, which some felt hindered the site's SEO.
The Hacker News post "Why Is This Site Built with C" generated a moderate amount of discussion with a variety of perspectives on the author's choice of C for their website.
Several commenters focused on the performance aspects. Some agreed with the author that C offers significant performance advantages, particularly for a static site, leading to faster loading times and reduced server load. They pointed out that the simplicity of C and lack of complex frameworks can contribute to this efficiency. However, others argued that while C can be incredibly performant, it's not inherently so, and achieving those benefits requires careful optimization and coding practices. They suggested that other languages and frameworks, while potentially less performant at their peak, are often easier to optimize to a sufficient level of performance for a typical website.
Another thread of discussion revolved around the maintainability and development experience. Some commenters appreciated the author's minimalist approach and the learning opportunity presented by using C. They saw it as a refreshing alternative to more complex web development stacks. However, others expressed concern about the long-term maintainability of a C-based website. They pointed out the potential difficulties in debugging, updating, and scaling such a site, particularly compared to more modern frameworks that offer built-in tools and libraries. They also highlighted the increased risk of security vulnerabilities if the C code isn't meticulously written and audited.
A few commenters questioned the practicality of using C for web development in general, arguing that the time and effort required to build and maintain a C-based site outweigh the potential performance benefits. They suggested that the author's choice might be more of a personal project or learning exercise rather than a practical solution for most web developers.
There was also some discussion about the specific technical details of the author's implementation, including their use of a custom HTTP server and templating engine. Some commenters expressed interest in the author's approach, while others suggested alternative libraries or frameworks that could simplify the process.
Finally, a few commenters simply expressed admiration for the author's unconventional approach and their willingness to explore different technologies. They saw it as a reminder that there's more than one way to build a website, and that sometimes choosing a less common technology can lead to interesting results.