mem-isolate
is a Rust crate designed to execute potentially unsafe code within isolated memory compartments. It leverages Linux's memfd_create
system call to create anonymous memory mappings, allowing developers to run untrusted code within these confined regions, limiting the potential damage from vulnerabilities or exploits. This sandboxing approach helps mitigate security risks by restricting access to the main process's memory, effectively preventing malicious code from affecting the wider system. The crate offers a simple API for setting up and managing these isolated execution environments, providing a more secure way to interact with external or potentially compromised code.
Ferron is a new web server built in Rust, designed for speed and memory safety. It leverages tokio and hyper, focusing on efficiency and avoiding unnecessary allocations. The project emphasizes performance and aims to be a robust and reliable foundation for web applications, though it is still in early development. Its core features include request routing, middleware support, and static file serving. Ferron aims to provide a solid alternative to existing web servers by capitalizing on Rust's performance characteristics and safety guarantees.
HN commenters generally express enthusiasm for Ferron, praising its performance and memory safety due to Rust. Several highlight the potential of integrating with existing Rust libraries and the benefits of its modular design. Some discuss the challenges of asynchronous programming in Rust and offer suggestions for improvements like connection pooling and HTTP/2 support. A few express skepticism about the project's maturity and the real-world performance benefits compared to established solutions, but overall, the sentiment is positive and curious about the project's future development. Some insightful comments compare Ferron to other Rust web frameworks like Actix and Axum, noting potential advantages in simplicity and performance.
This paper explores practical strategies for hardening C and C++ software against memory safety vulnerabilities without relying on memory-safe languages or rewriting entire codebases. It focuses on compiler-based mitigations, leveraging techniques like Control-Flow Integrity (CFI) and Shadow Stacks, and highlights how these can be effectively deployed even in complex, legacy projects with limited resources. The paper emphasizes the importance of a layered security approach, combining static and dynamic analysis tools with runtime protections to minimize attack surfaces and contain the impact of potential exploits. It argues that while a complete shift to memory-safe languages is ideal, these mitigation techniques offer valuable interim protection and represent a pragmatic approach for enhancing the security of existing C/C++ software in the real world.
Hacker News users discussed the practicality and effectiveness of the proposed "TypeArmor" system for securing C/C++ code. Some expressed skepticism about its performance overhead and the complexity of retrofitting it onto existing projects, questioning its viability compared to rewriting in memory-safe languages like Rust. Others were more optimistic, viewing TypeArmor as a potentially valuable tool for hardening legacy codebases where rewriting is not feasible. The discussion touched upon the trade-offs between security and performance, the challenges of integrating such a system into real-world projects, and the overall feasibility of achieving robust memory safety in C/C++ without fundamental language changes. Several commenters also pointed out limitations of TypeArmor, such as its inability to handle certain complex pointer manipulations and the potential for vulnerabilities in the TypeArmor system itself. The general consensus seemed to be cautious interest, acknowledging the potential benefits while remaining pragmatic about the inherent difficulties of securing C/C++.
Type++ is a novel defense against type confusion vulnerabilities that leverages inline type information to enforce type constraints at runtime with minimal overhead. It embeds compact type metadata directly within objects, enabling efficient runtime checks to ensure that memory accesses and operations are consistent with the declared type. The system utilizes a flexible metadata representation supporting diverse types and inheritance hierarchies, and employs a selective instrumentation strategy to minimize performance impact. Evaluation across various benchmarks and real-world applications demonstrates that Type++ effectively detects and prevents type confusion exploits with a modest runtime overhead, typically under 5%, making it a practical solution for enhancing software security.
HN commenters discuss the Type++ paper, generally finding the approach interesting but expressing concerns about performance overhead. Several suggest that a compile-time approach might be preferable, questioning the practicality of runtime checks. Some raise concerns about the complexity of implementation and the potential for bugs within the Type++ system itself. A few highlight the potential benefits for security and catching subtle errors, but the overall sentiment leans towards skepticism regarding the trade-off between safety and performance. The reliance on compiler modifications is also noted as a potential barrier to adoption.
The YouTube video "Microsoft is Getting Rusty" argues that Microsoft is increasingly adopting the Rust programming language due to its memory safety and performance benefits, particularly in areas where C++ has historically been problematic. The video highlights Microsoft's growing use of Rust in various projects like Azure and Windows, citing examples like rewriting core Windows components. It emphasizes that while C++ remains important, Rust is seen as a crucial tool for improving the security and reliability of Microsoft's software, and suggests this trend will likely continue as Rust matures and gains wider adoption within the company.
Hacker News users discussed Microsoft's increasing use of Rust, generally expressing optimism about its memory safety benefits and suitability for performance-sensitive systems programming. Some commenters noted Rust's steep learning curve, but acknowledged its potential to mitigate vulnerabilities prevalent in C/C++ codebases. Several users shared personal experiences with Rust, highlighting its positive impact on their projects. The discussion also touched upon the challenges of integrating Rust into existing projects and the importance of tooling and community support. A few comments expressed skepticism, questioning the long-term viability of Rust and its ability to fully replace C/C++. Overall, the comments reflect a cautious but positive outlook on Microsoft's adoption of Rust.
Google is advocating for widespread adoption of memory-safe programming languages like Rust, Go, Swift, and Java to enhance software security. They highlight memory safety vulnerabilities as a significant source of security flaws, impacting a wide range of software, including critical infrastructure. The blog post calls for collaborative efforts across the industry, including open-source communities and standards organizations, to establish and promote memory safety standards, develop better tooling, and encourage a gradual shift away from memory-unsafe languages like C and C++. This transition is presented as essential for securing the future of software development and mitigating persistent vulnerabilities.
Hacker News users generally agree with Google's push for memory safety, citing the prevalence of memory-related vulnerabilities. Several commenters highlight Rust as a strong contender for a safer systems language, praising its performance and security features. Some discuss the challenges of adoption, including the learning curve for Rust and the existing codebase in C/C++. The idea of gradual adoption and tooling to help transition are also mentioned. One commenter notes the importance of standardizing error handling and propagation to complement memory safety. Another emphasizes the need for auditing tools and automated detection capabilities. A few users are more skeptical, suggesting that the focus on memory safety might divert attention from other important security aspects.
Nvidia's security team advocates shifting away from C/C++ due to its susceptibility to memory-related vulnerabilities, which account for a significant portion of their reported security issues. They propose embracing memory-safe languages like Rust, Go, and Java to improve the security posture of their products and reduce the time and resources spent on vulnerability remediation. While acknowledging the performance benefits often associated with C/C++, they argue that modern memory-safe languages offer comparable performance while significantly mitigating security risks. This shift requires overcoming challenges like retraining engineers and integrating new tools, but Nvidia believes the long-term security gains outweigh the transitional costs.
Hacker News commenters largely agree with the AdaCore blog post's premise that C is a major source of vulnerabilities. Many point to Rust as a viable alternative, highlighting its memory safety features and performance. Some discuss the practical challenges of transitioning away from C, citing legacy codebases, tooling, and the existing expertise surrounding C. Others explore alternative approaches like formal verification or stricter coding standards for C. A few commenters push back on the idea of abandoning C entirely, arguing that its performance benefits and low-level control are still necessary for certain applications, and that focusing on better developer training and tools might be a more effective solution. The trade-offs between safety and performance are a recurring theme.
This blog post advocates for a "no-panic" approach to Rust systems programming, aiming to eliminate all panics in production code. The author argues that while panic!
is useful during development, it's unsuitable for production systems where predictable failure handling is crucial. They propose using the ?
operator extensively for error propagation and leveraging types like Result
and Option
to explicitly handle potential failures. This forces developers to consider and address all possible error scenarios, leading to more robust and reliable systems. The post also touches upon strategies for handling truly unrecoverable errors, suggesting techniques like logging the error and then halting the system gracefully, rather than relying on the unpredictable behavior of a panic.
HN commenters largely agree with the author's premise that the no_panic
crate offers a useful approach for systems programming in Rust. Several highlight the benefit of forcing explicit error handling at compile time, preventing unexpected panics in production. Some discuss the trade-offs of increased verbosity and potential performance overhead compared to using Option
or Result
. One commenter points out a potential issue with using no_panic
in interrupt handlers where unwinding is genuinely unsafe, suggesting careful consideration is needed when applying this technique. Another appreciates the blog post's clarity and the practical example provided. There's also a brief discussion on how the underlying mechanisms of no_panic
work, including its use of static mutable variables and compiler intrinsics.
This paper introduces Crusade, a formally verified translation from a subset of C to safe Rust. Crusade targets a memory-safe dialect of C, excluding features like arbitrary pointer arithmetic and casts. It leverages the Coq proof assistant to formally verify the translation's correctness, ensuring that the generated Rust code behaves identically to the original C, modulo non-determinism inherent in C. This rigorous approach aims to facilitate safe integration of legacy C code into Rust projects without sacrificing confidence in memory safety, a critical aspect of modern systems programming. The translation handles a substantial subset of C, including structs, unions, and functions, and demonstrates its practical applicability by successfully converting real-world C libraries.
HN commenters discuss the challenges and nuances of formally verifying the C to Rust transpiler, Cracked. Some express skepticism about the practicality of fully verifying such a complex tool, citing the potential for errors in the formal proofs themselves and the inherent difficulty of capturing all undefined C behavior. Others question the performance impact of the generated Rust code. However, many commend the project's ambition and see it as a significant step towards safer systems programming. The discussion also touches upon the trade-offs between a fully verified transpiler and a more pragmatic approach focusing on common C patterns, with some suggesting that prioritizing practical safety improvements could be more beneficial in the short term. There's also interest in the project's handling of concurrency and the potential for integrating Cracked with existing Rust tooling.
Summary of Comments ( 5 )
https://news.ycombinator.com/item?id=43601301
Hacker News users discussed the practicality and security implications of the
mem-isolate
crate. Several commenters expressed skepticism about its ability to truly isolate unsafe code, particularly in complex scenarios involving system calls and shared resources. Concerns were raised about the performance overhead and the potential for subtle bugs in the isolation mechanism itself. The discussion also touched on the challenges of securely managing memory in Rust and the trade-offs between safety and performance. Some users suggested alternative approaches, such as using WebAssembly or language-level sandboxing. Overall, the comments reflected a cautious optimism about the project but acknowledged the difficulty of achieving complete isolation in a practical and efficient manner.The Hacker News post "Show HN: I built a Rust crate for running unsafe code safely" (linking to the
mem-isolate
crate) generated a moderate amount of discussion, mostly focused on the complexities and nuances of memory safety in Rust, and whether the crate truly offers a "safe" solution for running unsafe code.Several commenters express skepticism about the claim of "safely" running unsafe code. One points out the inherent contradiction, suggesting the term is an oxymoron. Another argues that true safety requires formal verification, and anything short of that is merely reducing the attack surface rather than eliminating it. This sentiment is echoed by another commenter who highlights the difficulty in proving the soundness of the approach and the potential for subtle bugs to undermine the isolation.
A few comments delve into the specifics of
mem-isolate
's implementation. One user questions its practicality for real-world scenarios, suggesting that the overhead of serialization and deserialization, coupled with the limitations on system call access, could severely limit its usefulness. They also mention the potential performance impact and the challenge of managing data dependencies between isolated processes.The discussion also touches upon alternative approaches to isolating unsafe code, such as WebAssembly. One commenter mentions Wasmtime as a more mature and robust solution, although they acknowledge that Wasmtime might not be suitable for all use cases. Another suggests using language-level sandboxing features provided by some languages.
Some users discuss the trade-offs between security and performance. One commenter notes that while complete memory safety is desirable, it often comes at a cost to performance. They suggest that in certain situations, a calculated risk with less strict isolation might be acceptable if performance is a critical factor.
Finally, a few comments express general interest in the project and commend the author for tackling a challenging problem. They acknowledge the difficulty of achieving true memory safety in systems programming and appreciate the effort to improve the security of Rust code. However, even these positive comments maintain a cautious tone, reflecting the overall skepticism towards the claim of absolute safety.