Qualcomm has open-sourced ELD, a new linker designed specifically for embedded systems. ELD aims to be faster and more memory-efficient than traditional linkers like GNU ld, especially beneficial for resource-constrained devices. It achieves this through features like parallel processing, demand paging, and a simplified design focusing on common embedded use cases. ELD supports ELF and is designed for integration with existing embedded workflows, offering potential improvements in link times and memory usage during development.
Dmitry Grinberg created a remarkably minimal Linux computer using just three 8-pin chips: an ATtiny85 microcontroller, a serial configuration PROM, and a voltage regulator. The ATtiny85 emulates a RISC-V CPU, running a custom Linux kernel compiled for this simulated architecture. While performance is limited due to the ATtiny85's resources, the system is capable of interactive use, including running a shell and simple programs, demonstrating the feasibility of a functional Linux system on extremely constrained hardware. The project highlights clever memory management and peripheral emulation techniques to overcome the limitations of the hardware.
Hacker News users discussed the practicality and limitations of the 8-pin Linux computer. Several commenters questioned the usefulness of such a minimal system, pointing out its lack of persistent storage and limited I/O capabilities. Others were impressed by the technical achievement, praising the author's ingenuity in fitting Linux onto such constrained hardware. The discussion also touched on the definition of "running Linux," with some arguing that a system without persistent storage doesn't truly run an operating system. Some commenters expressed interest in potential applications like embedded systems or educational tools. The lack of networking capabilities was also noted as a significant limitation. Overall, the reaction was a mix of admiration for the technical feat and skepticism about its practical value.
LVGL is a free and open-source graphics library providing everything you need to create embedded GUIs with easy-to-use graphical elements, beautiful visual effects, and a low memory footprint. It's designed to be platform-agnostic, supporting a wide range of input devices and hardware from microcontrollers to powerful embedded systems like the Raspberry Pi. Key features include scalable vector graphics, animations, anti-aliasing, Unicode support, and a flexible style system for customizing the look and feel of the interface. With its rich set of widgets, themes, and an active community, LVGL simplifies the development process of visually appealing and responsive embedded GUIs.
HN commenters generally praise LVGL's ease of use, beautiful output, and good documentation. Several note its suitability for microcontrollers, especially with limited resources. Some express concern about its memory footprint, even with optimizations, and question its performance compared to other GUI libraries. A few users share their positive experiences integrating LVGL into their projects, highlighting its straightforward integration and active community. Others discuss the licensing (MIT) and its suitability for commercial products. The lack of a GPU dependency is mentioned as both a positive and negative, offering flexibility but potentially impacting performance for complex graphics. Finally, some comments compare LVGL to other embedded GUI libraries, with varying opinions on its relative strengths and weaknesses.
Koto is a modern, general-purpose programming language designed for ease of use and performance. It features a dynamically typed system with optional type hints, garbage collection, and built-in support for concurrency through asynchronous functions and channels. Koto emphasizes functional programming paradigms but also allows for imperative and object-oriented styles. Its syntax is concise and readable, drawing inspiration from languages like Python and Lua. Koto aims to be embeddable, with a small runtime and the ability to compile to bytecode or native machine code. It is actively developed and open-source, promoting community involvement and contributions.
Hacker News users discussed Koto's design choices, praising its speed, built-in concurrency support based on fibers, and error handling through optional values. Some compared it favorably to Lua, highlighting Koto's more modern approach. The creator of Koto engaged with commenters, clarifying details about the language's garbage collection, string interning, and future development plans, including potential WebAssembly support. Concerns were raised about its small community size and the practicality of using a niche language, while others expressed excitement about its potential as a scripting language or for game development. The discussion also touched on Koto's syntax and its borrow checker, with commenters offering suggestions and feedback.
This project showcases a DIY physical Pomodoro timer built using an ESP32 microcontroller and an e-paper display. The device allows users to easily start, pause, and reset their focused work intervals and breaks. The e-paper screen clearly displays the remaining time and the current Pomodoro state (work or break). The code, available on GitHub, is designed to be customizable, allowing users to adjust the durations of work and break periods. The use of an e-paper screen makes it low-power and easily readable in various lighting conditions.
HN users generally praised the project's clean design and execution. Several commenters appreciated the minimalist aesthetic and focus on a single function, contrasting it favorably with more complex, app-based timers. Some suggested improvements like adding a physical button for starting/stopping or integrating features like task tracking. The choice of e-paper display was also well-received for its low power consumption and clear readability. A few users expressed interest in purchasing a pre-built version, while others were inspired to create their own versions based on the open-source design. Some discussion revolved around the value of physical versus digital timers, with proponents of physical timers citing the benefits of tactile feedback and reduced distractions.
MilliForth-6502 is a minimalist Forth implementation for the 6502 processor, designed to be incredibly small while remaining a practical programming language. It features a 1 KB dictionary, a 256-byte parameter stack, and implements core Forth words including arithmetic, logic, stack manipulation, and I/O. Despite its size, MilliForth allows for defining new words and includes a simple interactive interpreter. Its compactness makes it suitable for resource-constrained 6502 systems, and the project provides source code and documentation for building and using it.
Hacker News users discussed the practicality and minimalism of MilliForth, a Forth implementation for the 6502 processor. Some questioned its usefulness beyond educational purposes, citing limited memory and awkward programming style compared to assembly language. Others appreciated its cleverness and the challenge of creating such a compact system, viewing it as a testament to Forth's flexibility. Several comments highlighted the historical context of Forth on resource-constrained systems and drew parallels to other small language implementations. The maintainability of generated code and the debugging experience were also mentioned as potential drawbacks. A few commenters expressed interest in exploring MilliForth further and potentially using it for small embedded projects.
Collapse OS is a minimal, highly adaptable operating system designed for a post-apocalyptic scenario where global supply chains have broken down. It aims to be runnable on minimal and easily scavenged hardware, using widely available Z80 processors. Its functionality focuses on essential tasks like bootstrapping other, more complex systems, creating and running simple programs, and interfacing with rudimentary hardware like text terminals and floppy drives. The project anticipates a future where readily available modern hardware and software are no longer accessible, and seeks to provide a digital life raft by relying on robust, easily reproduced technologies.
Hacker News users discussing Collapse OS express skepticism about its practicality and usefulness. Many question the likelihood of a societal collapse severe enough to render existing technology useless, while others point out the difficulty of bootstrapping complex technology from salvaged parts in a post-apocalyptic scenario. Some find the project interesting as a thought experiment or a hobby, but doubt its real-world applicability. A few commenters express concerns about the project's potential to attract a "doomer" mentality. The overall sentiment is one of cautious curiosity mixed with significant doubt about the project's premise and viability.
The seL4 microkernel is a highly secure and reliable operating system foundation, formally verified to guarantee functional correctness and security properties. This verification proves that the implementation adheres to its specification, encompassing properties like data integrity and control-flow integrity. Designed for high-performance and real-time embedded systems, seL4's small size and minimal interface facilitate formal analysis and predictable resource usage. Its strong isolation mechanisms enable the construction of robust systems where different components with varying levels of trust can coexist securely, preventing failures in one component from affecting others. The kernel's open-source nature and liberal licensing promote transparency and wider adoption, fostering further research and development in secure systems.
Hacker News users discussed the seL4 microkernel, focusing on its formal verification and practical applications. Some questioned the real-world impact of the verification, highlighting the potential for vulnerabilities outside the kernel's scope, such as in device drivers or user-space applications. Others praised the project's rigor and considered it a significant achievement in system software. Several comments mentioned the challenges of using microkernels effectively, including the performance overhead of inter-process communication (IPC). Some users also pointed out the limited adoption of microkernels in general, despite their theoretical advantages. There was also interest in seL4's use in specific applications like autonomous vehicles and aerospace.
Picoruby is a lightweight implementation of the Ruby programming language specifically designed for microcontrollers. Based on mruby/c, a minimal version of mruby, it aims to bring the flexibility and ease-of-use of a high-level language like Ruby to resource-constrained embedded systems. This allows developers to write more complex logic and algorithms on small devices using a familiar syntax, potentially simplifying development and improving code maintainability. The project includes a virtual machine, a garbage collector, and core Ruby classes, enabling a reasonable subset of Ruby functionality on microcontrollers.
HN users discussed the practicality and performance implications of using mruby and picoruby in resource-constrained environments. Some expressed skepticism about the actual performance benefits, questioning whether the overhead of the interpreter outweighs the advantages of using a higher-level language. Others highlighted the potential benefits for rapid prototyping and easier code maintenance. Several commenters pointed out that Lua is a strong competitor in this space, offering similar benefits with potentially better performance. The suitability of garbage collection for embedded systems was also debated, with concerns about unpredictable latency. Finally, some users shared their positive experiences using mruby in similar projects.
"Designing Electronics That Work" emphasizes practical design considerations often overlooked in theoretical learning. It advocates for a holistic approach, considering component tolerances, environmental factors like temperature and humidity, and the realities of manufacturing processes. The post stresses the importance of thorough testing throughout the design process, not just at the end, and highlights the value of building prototypes to identify and address unforeseen issues. It champions "design for testability" and suggests techniques like adding test points and choosing components that simplify debugging. Ultimately, the article argues that robust electronics design requires anticipating potential problems and designing circuits that are resilient to real-world conditions.
HN commenters largely praised the article for its practical, experience-driven advice. Several highlighted the importance of understanding component tolerances and derating, echoing the author's emphasis on designing for real-world conditions, not just theoretical values. Some shared their own anecdotes about failures caused by overlooking these factors, reinforcing the article's points. A few users also appreciated the focus on simple, robust designs, emphasizing that over-engineering can introduce unintended vulnerabilities. One commenter offered additional resources on grounding and shielding, further supplementing the article's guidance on mitigating noise and interference. Overall, the consensus was that the article provided valuable insights for both beginners and experienced engineers.
The Raspberry Pi RP2040 microcontroller is now available as a standalone chip, the RP2350, allowing manufacturers to integrate it into their own designs. This dual-core Cortex-M0+ processor with 264KB of SRAM is offered in two package variants: a QFN-56 and a future LGA package with stacked external flash memory. The QFN-56 is available for immediate purchase, offering a cost-effective solution for diverse embedded applications. The stacked memory variant promises simplified design and reduced board space, though pricing and availability for that package are yet to be announced.
Hacker News users generally expressed excitement about the RP2350's availability and potential, particularly its low cost and the possibilities opened by the stacked memory variant. Several commenters discussed the chip's suitability for specific applications, including robotics, industrial control, and amateur radio. Some expressed skepticism about the real-world performance impact of the stacked memory, wanting to see benchmarks. Others debated the merits of the RP2350 compared to other microcontrollers like the ESP32, highlighting trade-offs in processing power, memory, and peripheral options. A few users also mentioned challenges they've faced with Raspberry Pi availability in the past, hoping this release would be smoother.
The blog post details the author's experience porting Rust to the RockPro64 (RP2350) single-board computer. They successfully brought up a minimal Rust environment, including core libraries, allowing basic "Hello, world!" functionality and interaction with GPIO pins. The process involved building a custom cross-compilation toolchain based on a pre-built Debian image, navigating architectural differences like the lack of an MMU, and implementing necessary drivers. While challenging, this achievement lays the groundwork for more complex Rust development on the RP2350, potentially opening doors for embedded systems applications.
HN commenters generally express enthusiasm for Rust's increasing viability on embedded platforms, particularly the RP2040. Several users discuss the benefits of Rust's memory safety and performance in this context, comparing it favorably to C/C++. Some point out the challenges of working with Rust on resource-constrained devices, like managing memory allocation and dealing with abstractions that can add overhead. A few commenters also mention specific crates like rp-pico
and embassy
, highlighting their usefulness for embedded Rust development on the RP2040. There's also discussion around build times, tooling, and the learning curve associated with Rust, with some suggesting that the ecosystem is still maturing but rapidly improving. Finally, some users share their own experiences and projects using Rust on embedded systems.
The blog post "ESP32 WiFi Superstitions" explores common practices developers employ when troubleshooting ESP32 WiFi connectivity issues, despite lacking a clear technical basis. The author argues that many of these "superstitions," like adding delays, calling WiFi.begin()
repeatedly, or disabling power-saving modes, often mask underlying problems with poor antenna design, inadequate power supply, or incorrect configuration rather than addressing the root cause. While these tweaks might sometimes appear to improve stability, they are ultimately unreliable solutions. The post encourages a more systematic debugging approach focusing on identifying and resolving the actual hardware or software issues causing the instability.
Hacker News users generally agreed with the author's point about the ESP32's WiFi sensitivity, sharing their own struggles and workarounds. Several commenters emphasized the importance of antenna design and placement, suggesting specific antenna types and advocating for proper grounding. Others pointed out the impact of environmental factors like metal enclosures and nearby electronics. The discussion also touched on potential firmware issues and the value of using a logic analyzer for debugging. Some users shared specific success stories by adjusting antenna placement or implementing suggested fixes. One commenter highlighted the challenges of reliable WiFi in battery-powered devices due to the power-hungry nature of WiFi, while another speculated on potential hardware limitations of the ESP32's radio circuitry.
Wokwi now offers a web-based simulator for developing and debugging embedded Rust programs. This online tool allows users to write, build, and run Rust code targeted for various microcontrollers, including the AVR ATmega328P (like the Arduino Uno) and RP2040 (Raspberry Pi Pico), directly in the browser. The simulator features peripherals like LEDs, buttons, serial output, and an integrated logic analyzer, enabling interactive hardware simulation without requiring physical hardware. Code can be compiled and flashed to the virtual microcontroller, and the simulator provides a debugging environment for stepping through code and inspecting variables. This simplifies the embedded Rust development process, making it more accessible for learning and experimentation.
HN commenters generally expressed enthusiasm for Wokwi's online embedded Rust simulator. Several praised its ease of use and accessibility, noting it lowers the barrier to entry for embedded development. Some highlighted the educational benefits, particularly for those new to Rust or embedded systems. A few pointed out the limitations of simulation compared to real hardware, but acknowledged the simulator's value for initial development and testing. The discussion also touched on potential improvements, including support for more microcontrollers and peripherals, as well as integration with other tools. Some users shared their positive experiences using Wokwi for specific projects, further reinforcing its practical usefulness.
This project introduces an open-source, fully functional Wi-Fi MAC layer implementation for the ESP32 microcontroller. It aims to provide a flexible and customizable alternative to the ESP32's closed-source MAC, enabling experimentation and research in areas like custom protocols, coexistence mechanisms, and dynamic spectrum access. The project leverages the ESP32's existing RF capabilities and integrates with its lower-level hardware, providing a complete solution for building and deploying custom Wi-Fi systems. The open nature of the project encourages community contributions and allows for tailoring the MAC layer to specific application requirements beyond the capabilities of the standard ESP32 SDK.
Hacker News commenters generally expressed excitement and interest in the open-source ESP32 Wi-Fi MAC layer project. Several praised the author's deep dive into the complexities of Wi-Fi and the effort involved in reverse-engineering undocumented features. Some questioned the project's practicality and licensing implications, particularly regarding regulatory compliance and potential conflicts with existing Wi-Fi stacks. Others discussed the potential benefits, including educational value, enabling custom protocols, and improving performance in specific niche applications like mesh networking. A few commenters also offered suggestions for future development, such as exploring FPGA implementations or integrating with existing open-source projects like Zephyr.
The post details the author's successful, albeit challenging, experience installing NetBSD 9.0 on a Sun JavaStation Network Computer (NC). The JavaStation's limited resources and unusual architecture, including its use of a microSPARC IIep processor and a small amount of RAM, presented various hurdles. These included needing to create custom boot floppies and finding compatible network drivers. Despite these difficulties, the author achieved a functional NetBSD installation, showcasing the operating system's portability and the author's persistence. The experience also highlighted the resourcefulness required to repurpose older hardware and the satisfaction of breathing new life into vintage computing platforms.
Commenters on Hacker News largely expressed nostalgia for JavaStations and Sun hardware, reminiscing about their quirks and limitations. Several appreciated the author's dedication to getting NetBSD running on such an unusual and constrained platform. Some discussed the challenges of working with the JavaStation's architecture, including its small amount of RAM and unusual graphics setup. Others shared their own experiences using JavaStations and similar thin clients, with some mentioning their use in educational settings. A few commenters also delved into technical details, discussing the specifics of NetBSD's compatibility and the process of getting X11 functioning.
The TinyTen is a compact, highly portable, and experimental high-frequency (HF) transceiver built around a low-power DSP. It utilizes direct digital synthesis (DDS) for both transmit and receive, covering 160 through 10 meters, with a maximum output power of 1W. The design prioritizes simplicity and small size, featuring a minimalist user interface with a single rotary encoder and a small LCD display. It requires an external computer for initial configuration and incorporates readily available components for easier construction by amateur radio enthusiasts. Despite its experimental nature, the TinyTen aims to deliver a functional and portable HF experience.
Hacker News users discuss the TinyTen transceiver with interest, focusing on its impressive DSP capabilities and small size. Several commenters express admiration for the project's ingenuity and the author's clear explanations. Some discuss the trade-offs of DSP-based radios, noting potential performance limitations compared to traditional analog designs, particularly regarding dynamic range and strong signal handling. Others are curious about the specifics of its DSP implementation and the choice of components. A few share personal experiences with similar projects and offer suggestions for improvements or alternative approaches. The overall sentiment is positive, with many praising the project as a fascinating example of modern radio design.
This blog post details how to create a simple WAV file audio player using a Raspberry Pi Pico and a VS1053B audio decoder chip. The author outlines the hardware connections, provides the necessary MicroPython code, and explains the process of converting WAV files to a suitable format for the VS1053B using a provided Python script. The code initializes the SPI bus, sets up communication with the VS1053B, and then reads and sends the WAV file data to the decoder for playback. The project offers a straightforward method for adding audio capabilities to Pico projects.
Hacker News users discussed the practicality and limitations of the Raspberry Pi Pico as an audio player. Several commenters pointed out the Pico's limited storage, suggesting SD card solutions or alternative microcontrollers like the ESP32 with built-in flash. Others questioned the need for code to handle WAV file parsing, advocating for simpler PCM data streaming. Some users expressed interest in using the project for specific applications like playing short notification sounds or chiptune music. The discussion also touched upon the Pico's suitability for audio synthesis and the potential of the RP2040 chip.
GitSyncPad is a small, programmable keypad designed to streamline common Git actions. By pressing dedicated keys, users can perform tasks like adding files, committing changes, pushing to remote repositories, and pulling updates, eliminating the need for typing commands in the terminal. It's customizable, allowing users to configure key mappings for their specific workflows and integrate with various Git providers like GitHub, GitLab, and Bitbucket. The device connects via USB and aims to increase efficiency for developers who frequently interact with Git.
HN commenters generally express skepticism about the GitSyncPad's practicality. Some question the value proposition of a dedicated physical device for common Git commands, arguing that keyboard shortcuts and shell scripts are faster and more flexible. Concerns are raised about context switching and the limited functionality offered compared to a full terminal. A few express mild interest, particularly for educational or accessibility purposes, but overall the response is lukewarm, with many suggesting that the project seems like a solution in search of a problem. One commenter points out a similar existing project called Git remote.
The author describes creating a DNS sinkhole using an ESP32 microcontroller to combat doomscrolling. By intercepting DNS requests on their local network and redirecting specific domains (like social media sites) to a local web server, they effectively block access to these sites. The ESP32 runs a custom DNS server that returns a pre-defined IP address for targeted domains, leading devices to a blank webpage hosted on the ESP32 itself. This allows the author to curtail time spent on distracting websites without relying on browser extensions or more complex network configurations.
Hacker News users generally praised the project's simplicity and effectiveness for blocking distracting websites. Several commenters suggested improvements, such as using a pre-built DNS sinkhole list or implementing a local DNS server for better performance. Some discussed the ethics and potential downsides of blocking websites, particularly for families or in situations where access is necessary. Others offered alternative solutions, like using Pi-hole or modifying the hosts file. A few pointed out potential issues with the ESP32's limited resources and the importance of using a reliable power supply. The overall sentiment was positive, viewing the project as a clever, albeit somewhat limited, solution to a common problem.
Ggwave is a small, cross-platform C library designed for transmitting data over sound using short, data-encoded tones. It focuses on simplicity and efficiency, supporting various payload formats including text, binary data, and URLs. The library provides functionalities for both sending and receiving, using a frequency-shift keying (FSK) modulation scheme. It features adjustable parameters like volume, data rate, and error correction level, allowing optimization for different environments and use-cases. Ggwave is designed to be easily integrated into other projects due to its small size and minimal dependencies, making it suitable for applications like device pairing, configuration sharing, or proximity-based data transfer.
HN commenters generally praise ggwave's simplicity and small size, finding it impressive and potentially useful for various applications like IoT device setup or offline data transfer. Some appreciated the clear documentation and examples. Several users discuss potential use cases, including sneaker authentication, sharing WiFi credentials, and transferring small files between devices. Concerns were raised about real-world robustness and susceptibility to noise, with some suggesting potential improvements like forward error correction. Comparisons were made to similar technologies, mentioning limitations of existing sonic data transfer methods. A few comments delve into technical aspects, like frequency selection and modulation techniques, with one commenter highlighting the choice of Goertzel algorithm for decoding.
This post details how to access the Qualcomm Quectel BG96 modem embedded within the RAK5010 WisBlock Core module via USB. The BG96 exposes multiple serial ports over USB, but only one is typically configured for user interaction. The post explains how to use minicom
to interact with the modem on its default port and outlines the process of switching to other ports, specifically the diagnostic port, using AT commands. This access allows for deeper interaction with the modem, enabling activities like firmware updates and more granular control, which are not possible through the default port. The author emphasizes the importance of switching back to the default port after completing tasks on the diagnostic port to restore normal functionality.
Several commenters on Hacker News discussed practical aspects of using the RAK5010 and similar devices. Some questioned the practicality of USB tethering for IoT applications, citing power consumption concerns and suggesting alternative solutions like direct TCP/IP connections over cellular. Others shared personal experiences and insights, including one commenter who detailed their success using the RAK7200 with a Quectel modem and another who noted the complexities and lack of clear documentation around AT command interactions for specific modem features. A few comments also touched upon the security implications of exposing the modem via USB, particularly in commercial deployments. The overall sentiment reflected interest in the technical details but also a pragmatic awareness of the challenges involved in this approach.
The blog post "A vending machine, on the internet" explores the concept of building a virtual vending machine using readily available web technologies. It details the author's project, which combines a physical interface (buttons and a display) with a web backend to simulate a real-world vending machine experience. The project uses a Raspberry Pi to control the physical components and communicates with a web server to manage inventory, process transactions, and deliver virtual "goods" like access codes or digital downloads. The post highlights the simplicity and accessibility of building such a project with tools like HTML, CSS, JavaScript, and Python, showcasing a fun and practical application of web development beyond traditional websites.
Hacker News users generally expressed enthusiasm for the internet-connected vending machine project. Several praised the creator's ingenuity and the "whimsical" nature of the project. Some commenters discussed the technical aspects, focusing on the use of a Raspberry Pi and the potential vulnerabilities of exposing such a device to the internet. Others shared similar personal projects, like controlling Christmas lights remotely. A few raised concerns about security and the practicality of the setup, questioning the real-world use cases beyond a fun experiment. There was also a short discussion about the cost-effectiveness of the hardware choices.
This blog post details the author's successful, yet extremely tight, implementation of a full Wi-Fi networking stack (including TLS) on the memory-constrained nRF9160. Using the Zephyr RTOS, they managed to squeeze in lwIP, mbedTLS, and other necessary components, leaving only about 1KB of RAM free. This required careful configuration and optimization, particularly within lwIP, to minimize memory usage without sacrificing essential functionality. The author highlights the challenges of working with the nRF9160's limited resources and shares specific configuration adjustments, such as reducing TCP window size and disabling IPv6, that enabled them to achieve a working Wi-Fi connection. The post serves as a practical demonstration of pushing the boundaries of what's possible on this resource-constrained platform.
Hacker News users discussed the challenges and ingenuity of fitting a full Wi-Fi stack onto the resource-constrained nRF9161. Several commenters expressed admiration for the author's accomplishment, highlighting the difficulty of working with such limited resources. Some questioned the practical applications, given the nRF9161's integrated cellular modem and the availability of smaller, cheaper Wi-Fi microcontrollers. Others suggested potential uses like captive portals or bridging between cellular and local networks. The Zephyr RTOS was mentioned as a contributing factor to the project's success due to its small footprint. One commenter shared their experience with similar memory constraints on embedded systems and offered debugging advice. The discussion also briefly touched on the implications of this achievement for IoT devices and the potential for further development in low-resource Wi-Fi applications.
The F8 is a new 8-bit computer architecture designed for efficiency in both code size and memory usage, especially when programming in C. It aims to achieve performance comparable to 16-bit systems while maintaining the simplicity and resource efficiency of 8-bit designs. This is accomplished through features like a hybrid stack/register-based architecture, variable-width instructions, and dedicated instructions for common C operations like pointer manipulation and function calls. The F8 also emphasizes practical applications with features like a built-in bootloader and support for direct connection to peripherals.
Hacker News users discussed the F8 architecture's unusual design choices. Several commenters questioned the practical applications given the performance tradeoffs for memory efficiency, particularly with modern memory availability. Some debated the value of 8-bit architectures in niche applications like microcontrollers, while others pointed out existing alternatives like AVR. The unusual register structure and lack of hardware stack were also discussed, with some suggesting it might hinder C compiler optimization. A few expressed interest in the unique approach, though skepticism about real-world viability was prevalent. Overall, the comments reflected a cautious curiosity towards F8 but with reservations about its usefulness compared to established architectures.
Espargos is an open-source project developing a modular, expandable, and affordable WiFi sensing array based on ESP32 microcontrollers. Each node in the array passively monitors surrounding WiFi signals, and through techniques like Channel State Information (CSI) analysis, can detect subtle changes in the environment. These changes can then be interpreted for various applications like gesture recognition, presence detection, and even material identification. The project emphasizes ease of use and customization, allowing users to build arrays of varying sizes and configurations tailored to specific needs. The software platform provides tools for data collection, processing, and visualization, enabling experimentation and development of novel sensing applications using the collected WiFi data.
Hacker News users discussed the Espargos project, primarily focusing on its potential applications and limitations. Some saw promise in using it for security, like detecting intruders or monitoring elderly relatives, while others suggested applications in smart home automation or scientific research like analyzing crowd movement. Concerns were raised regarding privacy implications, the practicality of calibration, and the limited range of the ESP32's WiFi sensing. The reliance on signal strength as the primary metric was also questioned, with some suggesting incorporating time-of-flight measurements for improved accuracy. A few commenters expressed interest in the project's open-source nature and potential for customization. There was some debate on the best use cases, with some arguing its value lay more in research and experimentation than in robust, real-world applications.
The Flea-Scope is a low-cost, open-source USB oscilloscope, logic analyzer, and arbitrary waveform generator. Designed with affordability and accessibility in mind, it utilizes a Cypress FX2LP microcontroller and features a minimalist design detailed in a comprehensive, publicly available PDF. The document covers hardware schematics, firmware, software, and usage instructions, enabling users to build, modify, and understand the device completely. The Flea-Scope aims to be a practical tool for hobbyists, students, and professionals seeking a basic, yet versatile electronic test instrument.
Commenters on Hacker News generally praised the Flea-Scope for its affordability and open-source nature, finding it a compelling option for hobbyists and those needing a basic tool. Several pointed out its limitations compared to professional equipment, particularly regarding bandwidth and sample rate. Some discussed potential improvements, including using a faster microcontroller and enhancing the software. The project's use of a Cypress FX2 chip was highlighted, with some expressing nostalgia for it. A few users shared personal experiences using similar DIY oscilloscopes, and others questioned the practicality of its low bandwidth for certain applications. The overall sentiment was positive, viewing the Flea-Scope as a valuable educational tool and a testament to what can be achieved with limited resources.
"Tiny Pointers" introduces a technique to reduce pointer size in C/C++ programs, thereby lowering memory usage without significantly impacting performance. The core idea involves restricting pointers to smaller regions of memory, enabling them to be represented with fewer bits. The paper details several methods for achieving this, including static analysis, profile-guided optimization, and dynamic recompilation. Experimental results demonstrate memory savings of up to 40% with negligible performance overhead in various benchmarks and real-world applications. This approach offers a promising solution for memory-constrained environments, particularly embedded systems and mobile devices.
HN users discuss the implications of "tiny pointers," focusing on potential performance improvements and drawbacks. Some doubt the practicality due to increased code complexity and the overhead of managing pointer metadata. Concerns are raised about compatibility with existing codebases and the potential for fragmentation in the memory allocator. Others express interest in exploring this concept further, particularly its application in specific scenarios like embedded systems or custom memory allocators where fine-grained control over memory is crucial. There's also discussion on whether the claimed benefits would outweigh the costs in real-world applications, with some suggesting that traditional optimization techniques might be more effective. A few commenters point out similar existing techniques like tagged pointers and debate the novelty of this approach.
Network Address Translation (NAT) presents significant challenges for battery-powered IoT devices aiming for low power consumption. Because devices behind NAT can't be directly addressed from the outside, they must maintain persistent outbound connections to receive data, negating the power-saving benefits of sleep modes. Techniques like keep-alive messages or frequent polling to maintain these connections consume significant energy. This post advocates for solutions that bypass NAT, such as IPv6 with its vast address space enabling globally routable unique addresses for each device, or by employing intermediaries like a message broker positioned outside the NAT. These approaches allow devices to initiate communication only when necessary, drastically reducing power consumption and extending battery life.
Several commenters on Hacker News discussed the challenges of NAT traversal for low-power devices, agreeing with the article's premise. Some suggested solutions like using a TURN server or a lightweight VPN, while others pointed out the benefits of IPv6 in eliminating the need for NAT entirely. One commenter highlighted the trade-offs between power consumption and complexity when implementing these workarounds, and another mentioned the difficulty of managing NAT keepalives with devices that sleep frequently. The issue of scaling these solutions for a large number of devices was also raised. Several users shared personal anecdotes of struggling with similar NAT issues. One commenter proposed a simpler approach involving a central server that all devices could communicate with, bypassing direct peer-to-peer communication and thus avoiding NAT complications altogether.
Colinux allows running Linux applications on a Windows system without the need for a virtual machine. It achieves this by running the Linux kernel as a single, large, cooperative Windows process. This process manages its own memory and handles Linux system calls, effectively creating a contained Linux environment within Windows. User-mode Linux applications then run within this environment, interacting with the Windows host only through a specialized filesystem driver and networking layer provided by Colinux. This approach offers performance advantages over traditional virtualization by minimizing the overhead associated with hardware emulation.
HN users discuss Colinux, focusing on its unique approach of running Linux within a single Windows process, contrasting it with virtual machines and WSL. Several express interest in its lightweight nature and potential performance benefits, especially for resource-constrained environments or specific use-cases like embedded systems. Some question its practicality compared to more established solutions like Docker or WSL, while others highlight the security implications of running a full kernel within a single process. The lack of recent updates to the project is also a recurring concern, leading to speculation about its current status and maintainability. The ingenuity of the approach is generally acknowledged, even if its practical application remains a point of debate.
Summary of Comments ( 0 )
https://news.ycombinator.com/item?id=43644966
Hacker News users generally expressed cautious optimism about ELD, Qualcomm's new embedded linker. Several commenters questioned its practical advantages over existing linkers like ld, particularly regarding its performance and debugging capabilities. Some wondered about its long-term support given Qualcomm's history with open-source projects. Others pointed out potential benefits like improved memory usage and build times, especially for complex embedded systems. The lack of clear benchmarks comparing ELD to established solutions was a recurring concern. A few users expressed interest in trying ELD for their projects, while others remained skeptical, preferring to wait for more evidence of its real-world effectiveness. The discussion also touched on the challenges of embedded development and the need for better tooling.
The Hacker News post titled "ELD: A new open-source embedded linker tool for embedded systems" has generated several comments discussing various aspects of the new linker and its potential impact.
One commenter expressed skepticism about the genuine openness of the project, pointing out Qualcomm's history with open-source projects and suggesting they might abandon it if it doesn't directly benefit their business interests. They questioned the long-term viability of relying on a tool from a vendor with such a track record.
Another commenter focused on the technical merits, praising the linker's claimed performance improvements and the ability to perform link-time garbage collection, which can significantly reduce the size of embedded binaries. They expressed excitement about potentially integrating it into their own workflow.
Several commenters discussed the challenges and complexities of embedded systems development, highlighting the fragmented tooling landscape and the difficulty of achieving optimal performance and code size. They saw ELD as a potential solution to some of these challenges, particularly for developers working with resource-constrained devices.
One commenter, identifying as an embedded developer, shared their experience with existing linkers and expressed frustration with their limitations, especially when dealing with complex projects. They welcomed the introduction of a new linker, hoping it would offer improved performance and debugging capabilities.
The discussion also touched upon the importance of build systems and the integration of ELD with existing tools. One commenter inquired about CMake integration, emphasizing the need for seamless integration with popular build systems for wider adoption.
A few commenters mentioned other linkers like Mold and LLD, comparing their features and performance with ELD. They speculated on whether ELD could compete with these established tools and what advantages it might offer.
Finally, some commenters expressed interest in learning more about the technical details of ELD, particularly its internal workings and optimization strategies. They hoped for more in-depth documentation and examples to facilitate experimentation and evaluation.