A critical vulnerability (CVE-2025-32433) exists in Erlang/OTP's SSH implementation, affecting versions prior to 26.2.1 and 25.3.2.6. This flaw allows unauthenticated remote attackers to execute arbitrary code on the server. Specifically, a specially crafted SSH message can trigger the vulnerability during the initial handshake, before authentication occurs, enabling complete system compromise. Users are urged to update their Erlang/OTP installations to the latest patched versions as soon as possible.
A vulnerability in Microsoft Partner Center (partner.microsoft.com) allowed unauthenticated users to access internal resources. Specifically, improperly configured Azure Active Directory (Azure AD) application and service principal permissions enabled unauthorized access to certain Partner Center APIs. This misconfiguration potentially exposed sensitive business information related to Microsoft partners. Microsoft addressed the vulnerability by correcting the Azure AD application and service principal permissions to prevent unauthorized access.
HN users discuss the lack of detail in the CVE report for CVE-2024-49035, making it difficult to assess the actual impact. Some speculate about the potential severity, ranging from trivial to highly impactful depending on the specific exposed data and functionality. The vagueness also raises questions about Microsoft's disclosure process and the potential for more serious underlying issues. Several commenters note the irony of a vulnerability on a partner security portal, highlighting the difficulty of maintaining perfect security even for organizations focused on it. One user questions the use of "unauthenticated access" in the title, suggesting it might be misleading without knowing what level of access was granted.
Summary of Comments ( 11 )
https://news.ycombinator.com/item?id=43716526
Hacker News users discuss the severity and impact of the Erlang/OTP SSH vulnerability. Some highlight the potential for widespread exploitation given Erlang's usage in telecom infrastructure and distributed systems. Several commenters question the assigned CVSS score of 9.8, finding it surprisingly high for a vulnerability that requires non-default configuration (specifically enabling password authentication). The discussion also touches on the practical implications of the vulnerability, acknowledging that while serious, exploitation might be limited by the need for open SSH ports and enabled password logins. Others express concern about the potential for nested exploitation, as vulnerable Erlang systems might host other exploitable services. Finally, some users note the responsible disclosure and patching process.
The Hacker News post titled "Unauthenticated Remote Code Execution in Erlang/OTP SSH" (https://news.ycombinator.com/item?id=43716526) has several comments discussing the vulnerability (CVE-2025-32433).
Several commenters highlight the severity of the vulnerability, being an unauthenticated remote code execution flaw. One user points out the particularly dangerous combination of this being a pre-auth vulnerability and Erlang's frequent use in distributed systems, increasing the potential attack surface. They mention that distributed Erlang systems often run with minimal firewalling, making them easier targets.
Another commenter notes that exploitation is straightforward, quoting the NIST advisory that "Successful exploitation of this vulnerability requires only sending a crafted SSH message." This emphasizes the low barrier to entry for potential attackers.
Discussion also revolves around the practical impact. One user questions how many publicly exposed Erlang SSH servers exist, suggesting that while serious, the impact might be limited depending on the prevalence of such deployments. This prompts another commenter to mention that while direct SSH access to Erlang nodes might be less common, many systems likely use distributed Erlang for backend communication, which could be vulnerable.
A commenter with experience in securing Erlang systems suggests that the vulnerability reinforces the importance of employing robust network security measures, like firewalls and VPNs, even within internal networks. They highlight that assuming internal networks are safe is a dangerous misconception.
There's some discussion of the technical details. One user dives deeper into the mechanism of the vulnerability, explaining that it arises from the way the
ssh_packet_set_size/1
function handles size limits before authentication, allowing malicious actors to bypass checks and execute arbitrary code.Finally, several commenters express concern about the vulnerability's potential to affect critical infrastructure and industrial control systems, given Erlang's presence in those sectors. One user speculates about the potential for this vulnerability to be exploited in targeted attacks.