A critical vulnerability (CVE-2025-32433) exists in Erlang/OTP's SSH implementation, affecting versions prior to 26.2.1 and 25.3.2.6. This flaw allows unauthenticated remote attackers to execute arbitrary code on the server. Specifically, a specially crafted SSH message can trigger the vulnerability during the initial handshake, before authentication occurs, enabling complete system compromise. Users are urged to update their Erlang/OTP installations to the latest patched versions as soon as possible.
Security researchers at Prizm Labs discovered a critical zero-click remote code execution (RCE) vulnerability in the SuperNote Nomad e-ink tablet. Exploiting a flaw in the device's update mechanism, an attacker could remotely execute arbitrary code with root privileges by sending a specially crafted OTA update notification via a malicious Wi-Fi access point. The attack requires no user interaction, making it particularly dangerous. The vulnerability stemmed from insufficient validation of update packages, allowing malicious firmware to be installed. Prizm Labs responsibly disclosed the vulnerability to SuperNote, who promptly released a patch. This vulnerability highlights the importance of robust security measures even in seemingly simple devices like e-readers.
Hacker News commenters generally praised the research and write-up for its clarity and depth. Several expressed concern about the Supernote's security posture, especially given its marketing towards privacy-conscious users. Some questioned the practicality of the exploit given its reliance on connecting to a malicious Wi-Fi network, but others pointed out the potential for rogue access points or compromised legitimate networks. A few users discussed the inherent difficulties in securing embedded devices and the trade-offs between functionality and security. The exploit's dependence on a user-initiated firmware update process was also highlighted, suggesting a slightly reduced risk compared to a fully automatic exploit. Some commenters shared their experiences with Supernote's customer support and device management, while others debated the overall significance of the vulnerability in the context of real-world threats.
Researchers at ReversingLabs discovered malicious code injected into the popular npm package flatmap-stream
. A compromised developer account pushed a malicious update containing a post-install script. This script exfiltrated environment variables and established a reverse shell to a command-and-control server, giving attackers remote access to infected machines. The malicious code specifically targeted Unix-like systems and was designed to steal sensitive information from development environments. ReversingLabs notified npm, and the malicious version was quickly removed. This incident highlights the ongoing supply chain security risks inherent in open-source ecosystems and the importance of strong developer account security.
HN commenters discuss the troubling implications of the patch-package
exploit, highlighting the ease with which malicious code can be injected into seemingly benign dependencies. Several express concern over the reliance on post-install scripts and the difficulty of auditing them effectively. Some suggest alternative approaches like using pnpm
with its content-addressable storage or sticking with lockfiles and verified checksums. The maintainers' swift response and revocation of the compromised credentials are acknowledged, but the incident underscores the ongoing vulnerability of the open-source ecosystem and the need for improved security measures. A few commenters point out that using a private, vetted registry, while costly, may be the only truly secure option for critical projects.
The blog post details a successful remote code execution (RCE) exploit against llama.cpp, a popular open-source implementation of the LLaMA large language model. The vulnerability stemmed from improper handling of user-supplied prompts within the --interactive-first
mode when loading a model from a remote server. Specifically, a carefully crafted long prompt could trigger a heap overflow, overwriting critical data structures and ultimately allowing arbitrary code execution on the server hosting the llama.cpp instance. The exploit involved sending a specially formatted prompt via a custom RPC client, demonstrating a practical attack scenario. The post concludes with recommendations for mitigating this vulnerability, emphasizing the importance of validating user input and avoiding the direct use of user-supplied data in memory allocation.
Hacker News users discussed the potential severity of the Llama.cpp vulnerability, with some pointing out that exploiting it requires a malicious prompt specifically crafted for that purpose, making accidental exploitation unlikely. The discussion highlighted the inherent risks of running untrusted code, especially within sandboxed environments like Docker, as the exploit demonstrates a bypass of these protections. Some commenters debated the practicality of the attack, with one noting the high resource requirements for running large language models (LLMs) like Llama, making targeted attacks less probable. Others expressed concern about the increasing complexity of software and the difficulty of securing it, particularly with the growing use of machine learning models. A few commenters questioned the wisdom of exposing LLMs directly to user input without robust sanitization and validation.
A critical remote code execution (RCE) vulnerability was discovered in the now-defunct mobile game Marvel: Contest of Champions (also known as Marvel Rivals). The game's chat functionality lacked proper input sanitization, allowing attackers to inject and execute arbitrary JavaScript code within clients of other players. This could have been exploited to steal sensitive information, manipulate game data, or even potentially take control of affected devices. The vulnerability, discovered by a security researcher while reverse-engineering the game, was responsibly disclosed to Kabam, the game's developer. Although a fix was implemented, the exploit served as a stark reminder of the potential security risks associated with unsanitized user inputs in online games.
Hacker News users discussed the exploit detailed in the blog post, focusing on the surprising simplicity of the vulnerability and the potential impact it could have had. Several commenters expressed amazement that such a basic oversight could exist in a production game, with one pointing out the irony of a game about superheroes being vulnerable to such a mundane attack. The discussion also touched on the responsible disclosure process, with users questioning why Kabam hadn't offered a bug bounty and acknowledging the author's ethical handling of the situation. Some users debated the severity of the vulnerability, with opinions ranging from "not a big deal" to a serious security risk given the game's access to user data. The lack of a detailed technical explanation in the blog post was also noted, with some users desiring more information about the specific code involved.
Summary of Comments ( 11 )
https://news.ycombinator.com/item?id=43716526
Hacker News users discuss the severity and impact of the Erlang/OTP SSH vulnerability. Some highlight the potential for widespread exploitation given Erlang's usage in telecom infrastructure and distributed systems. Several commenters question the assigned CVSS score of 9.8, finding it surprisingly high for a vulnerability that requires non-default configuration (specifically enabling password authentication). The discussion also touches on the practical implications of the vulnerability, acknowledging that while serious, exploitation might be limited by the need for open SSH ports and enabled password logins. Others express concern about the potential for nested exploitation, as vulnerable Erlang systems might host other exploitable services. Finally, some users note the responsible disclosure and patching process.
The Hacker News post titled "Unauthenticated Remote Code Execution in Erlang/OTP SSH" (https://news.ycombinator.com/item?id=43716526) has several comments discussing the vulnerability (CVE-2025-32433).
Several commenters highlight the severity of the vulnerability, being an unauthenticated remote code execution flaw. One user points out the particularly dangerous combination of this being a pre-auth vulnerability and Erlang's frequent use in distributed systems, increasing the potential attack surface. They mention that distributed Erlang systems often run with minimal firewalling, making them easier targets.
Another commenter notes that exploitation is straightforward, quoting the NIST advisory that "Successful exploitation of this vulnerability requires only sending a crafted SSH message." This emphasizes the low barrier to entry for potential attackers.
Discussion also revolves around the practical impact. One user questions how many publicly exposed Erlang SSH servers exist, suggesting that while serious, the impact might be limited depending on the prevalence of such deployments. This prompts another commenter to mention that while direct SSH access to Erlang nodes might be less common, many systems likely use distributed Erlang for backend communication, which could be vulnerable.
A commenter with experience in securing Erlang systems suggests that the vulnerability reinforces the importance of employing robust network security measures, like firewalls and VPNs, even within internal networks. They highlight that assuming internal networks are safe is a dangerous misconception.
There's some discussion of the technical details. One user dives deeper into the mechanism of the vulnerability, explaining that it arises from the way the
ssh_packet_set_size/1
function handles size limits before authentication, allowing malicious actors to bypass checks and execute arbitrary code.Finally, several commenters express concern about the vulnerability's potential to affect critical infrastructure and industrial control systems, given Erlang's presence in those sectors. One user speculates about the potential for this vulnerability to be exploited in targeted attacks.