The cg_clif
project has made significant progress in compiling Rust to C, achieving a 95.9% pass rate on the Rust test suite. This compiler leverages Cranelift as a backend and utilizes a custom ABI for passing Rust data structures. Notably, it's now functional on more unusual platforms like wasm32-wasi
and thumbv6m-none-eabi
(for embedded ARM devices). While performance isn't a primary focus currently, basic functionality and compatibility are progressing rapidly, demonstrating the potential for compiling Rust to a portable C representation.
This blog post details how to leverage the Rust standard library (std
) within applications running on the NuttX Real-Time Operating System (RTOS), a common choice for embedded systems. The author demonstrates a method to link the Rust std
components, specifically write()
for console output, with NuttX's system calls. This allows developers to write Rust code that feels idiomatic, using familiar functions like println!()
, while still targeting the resource-constrained environment of NuttX. The process involves creating a custom target specification JSON file and implementing shim
functions that bridge the gap between the Rust standard library's expectations and the underlying NuttX syscalls. The result is a simplified development experience, enabling more portable and maintainable Rust code on embedded platforms.
Hacker News users discuss the challenges and advantages of using Rust with NuttX. Some express skepticism about the real-world practicality and performance benefits, particularly regarding memory usage and the overhead of Rust's safety features in embedded systems. Others highlight the potential for improved reliability and security that Rust offers, contrasting it with the inherent risks of C in such environments. The complexities of integrating Rust's memory management with NuttX's existing mechanisms are also debated, along with the potential need for careful optimization and configuration to realize Rust's benefits in resource-constrained systems. Several commenters point out that while intriguing, the project is still experimental and requires more maturation before becoming a viable option for production-level embedded development. Finally, the difficulty of porting existing NuttX drivers to Rust and the lack of a robust Rust ecosystem for embedded development are identified as potential roadblocks.
Summary of Comments ( 164 )
https://news.ycombinator.com/item?id=43661329
Hacker News users discussed the impressive 95.9% test pass rate of the Rust-to-C compiler, particularly its ability to target unusual platforms like the Sega Saturn and Sony PlayStation. Some expressed skepticism about the practical applications, questioning the performance implications and debugging challenges of such a complex transpilation process. Others highlighted the potential benefits for code reuse and portability, enabling Rust code to run on legacy or resource-constrained systems. The project's novelty and ambition were generally praised, with several commenters expressing interest in the developer's approach and future developments. Some also debated the suitability of "compiler" versus "transpiler" to describe the project. There was also discussion around specific technical aspects, like memory management and the handling of Rust's borrow checker within the C output.
The Hacker News post titled "Rust to C compiler – 95.9% test pass rate, odd platforms" sparked a discussion with several interesting comments. Many commenters focused on the complexities and nuances of compiling Rust to C, particularly given Rust's unique memory management features.
One commenter highlighted the challenges inherent in translating Rust's borrow checker and ownership model into C, which lacks these built-in mechanisms. They questioned how the compiler handled these crucial aspects of Rust, expressing skepticism about achieving true compatibility without significant runtime overhead or limitations. This comment resonated with others who also expressed concern about the potential performance implications and the difficulty of replicating Rust's safety guarantees in C.
Another commenter pointed out the inherent difficulty in targeting "odd platforms," as mentioned in the title. They elaborated on the potential issues with varying C standard library implementations and the complexities of ensuring compatibility across diverse architectures and operating systems. This prompted a discussion about the trade-offs between portability and performance when attempting such a compilation process.
Several comments also touched on the potential use cases of such a compiler. Some suggested it could be valuable for embedded systems or environments where Rust isn't directly supported. Others questioned the practicality, arguing that if the target platform supports a C compiler, it might also be feasible to support a Rust compiler directly, potentially negating the need for a transpilation step.
The discussion also explored alternative approaches, such as compiling Rust to LLVM bitcode and then using LLVM to generate C code. This was presented as a potentially more robust approach that could leverage LLVM's optimizations and platform support.
Finally, some comments expressed interest in the specific platforms targeted by the project and requested more details about the remaining 4.1% of failing tests. They were curious about the nature of these failures and whether they represented fundamental limitations or solvable issues. Overall, the comments reflected a mixture of curiosity, skepticism, and cautious optimism about the potential of a Rust-to-C compiler.