"Understanding Machine Learning: From Theory to Algorithms" provides a comprehensive overview of machine learning, bridging the gap between theoretical principles and practical applications. The book covers a wide range of topics, from basic concepts like supervised and unsupervised learning to advanced techniques like Support Vector Machines, boosting, and dimensionality reduction. It emphasizes the theoretical foundations, including statistical learning theory and PAC learning, to provide a deep understanding of why and when different algorithms work. Practical aspects are also addressed through the presentation of efficient algorithms and their implementation considerations. The book aims to equip readers with the necessary tools to both analyze existing learning algorithms and design new ones.
"Matrix Calculus (For Machine Learning and Beyond)" offers a comprehensive guide to matrix calculus, specifically tailored for its applications in machine learning. It covers foundational concepts like derivatives, gradients, Jacobians, Hessians, and their properties, emphasizing practical computation and usage over rigorous proofs. The resource presents various techniques for matrix differentiation, including the numerator-layout and denominator-layout conventions, and connects these theoretical underpinnings to real-world machine learning scenarios like backpropagation and optimization algorithms. It also delves into more advanced topics such as vectorization, chain rule applications, and handling higher-order derivatives, providing numerous examples and clear explanations throughout to facilitate understanding and application.
Hacker News users discussed the accessibility and practicality of the linked matrix calculus resource. Several commenters appreciated its clear explanations and examples, particularly for those without a strong math background. Some found the focus on differentials beneficial for understanding backpropagation and optimization algorithms. However, others argued that automatic differentiation makes manual matrix calculus less crucial in modern machine learning, questioning the resource's overall relevance. A few users also pointed out the existence of other similar resources, suggesting alternative learning paths. The overall sentiment leaned towards cautious praise, acknowledging the resource's quality while debating its necessity in the current machine learning landscape.
The paper "Auto-Differentiating Any LLM Workflow: A Farewell to Manual Prompting" introduces a method to automatically optimize LLM workflows. By representing prompts and other workflow components as differentiable functions, the authors enable gradient-based optimization of arbitrary metrics like accuracy or cost. This eliminates the need for manual prompt engineering, allowing users to simply specify their desired outcome and let the system learn the best prompts and parameters automatically. The approach, called DiffPrompt, uses a continuous relaxation of discrete text and employs efficient approximate backpropagation through the LLM. Experiments demonstrate the effectiveness of DiffPrompt across diverse tasks, showcasing improved performance compared to manual prompting and other automated methods.
Hacker News users discuss the potential of automatic differentiation for LLM workflows, expressing excitement but also raising concerns. Several commenters highlight the potential for overfitting and the need for careful consideration of the objective function being optimized. Some question the practical applicability given the computational cost and complexity of differentiating through large LLMs. Others express skepticism about abandoning manual prompting entirely, suggesting it remains valuable for high-level control and creativity. The idea of applying gradient descent to prompt engineering is generally seen as innovative and potentially powerful, but the long-term implications and practical limitations require further exploration. Some users also point out potential misuse cases, such as generating more effective spam or propaganda. Overall, the sentiment is cautiously optimistic, acknowledging the theoretical appeal while recognizing the significant challenges ahead.
Ruder's post provides a comprehensive overview of gradient descent optimization algorithms, categorizing them into three groups: momentum, adaptive, and other methods. The post explains how vanilla gradient descent can be slow and struggle with noisy gradients, leading to the development of momentum-based methods like Nesterov accelerated gradient which anticipates future gradient direction. Adaptive methods, such as AdaGrad, RMSprop, and Adam, adjust learning rates for each parameter based on historical gradient information, proving effective in sparse and non-stationary settings. Finally, the post touches upon other techniques like conjugate gradient, BFGS, and L-BFGS that can further improve convergence in specific scenarios. The author concludes with a practical guide, offering recommendations for choosing the right optimizer based on problem characteristics and highlighting the importance of careful hyperparameter tuning.
Hacker News users discuss the linked blog post on gradient descent optimization algorithms, mostly praising its clarity and comprehensiveness. Several commenters share their preferred algorithms, with Adam and SGD with momentum being popular choices, while others highlight the importance of understanding the underlying principles regardless of the specific algorithm used. Some discuss the practical challenges of applying these algorithms, including hyperparameter tuning and the computational cost of more complex methods. One commenter points out the article's age (2016) and suggests that more recent advancements, particularly in adaptive methods, warrant an update. Another user mentions the usefulness of the overview for choosing the right optimizer for different neural network architectures.
Summary of Comments ( 45 )
https://news.ycombinator.com/item?id=43586073
HN users largely praised Shai Shalev-Shwartz and Shai Ben-David's "Understanding Machine Learning" as a highly accessible and comprehensive introduction to the field. Commenters highlighted the book's clear explanations of fundamental concepts, its rigorous yet approachable mathematical treatment, and the helpful inclusion of exercises. Several pointed out its value for both beginners and those with prior ML experience seeking a deeper theoretical understanding. Some compared it favorably to other popular ML resources, noting its superior balance between theory and practice. A few commenters also shared specific chapters or sections they found particularly insightful, such as the treatment of PAC learning and the VC dimension. There was a brief discussion on the book's coverage (or lack thereof) of certain advanced topics like deep learning, but the overall sentiment remained strongly positive.
The Hacker News post titled "Understanding Machine Learning: From Theory to Algorithms" linking to Shai Shalev-Shwartz and Shai Ben-David's book has a moderate number of comments, discussing various aspects of the book and machine learning education in general.
Several commenters praise the book for its clarity and accessibility, especially for those with a stronger mathematical background. One user describes it as the "most digestible theory book," highlighting its helpful explanations of fundamental concepts. Another appreciates the book's focus on proving the theory behind ML algorithms, which they found lacking in other resources. The balance between theory and practical application is also commended, with some users noting how the book helped them bridge the gap between abstract concepts and real-world implementations. Specific chapters on PAC learning and VC dimension are singled out as particularly valuable.
A recurring theme in the comments is the comparison of this book with other popular machine learning resources. "The Elements of Statistical Learning" is frequently mentioned as a more statistically-focused alternative, often considered more challenging. Some users suggest using both books in conjunction, leveraging Shalev-Shwartz and Ben-David's book as a starting point before tackling the more advanced "Elements of Statistical Learning." Another comparison is made with the "Hands-On Machine Learning" book, which is characterized as more practically oriented.
Some commenters discuss the role of mathematical prerequisites in understanding machine learning. While the book is generally praised for its clarity, a few users acknowledge that a solid foundation in linear algebra, probability, and calculus is still necessary to fully grasp the material. One comment even suggests specific resources to brush up on these mathematical concepts before diving into the book.
Beyond the book itself, the discussion touches upon broader topics in machine learning education. The importance of understanding the theoretical underpinnings of algorithms is emphasized, with several comments cautioning against relying solely on practical implementations without a deeper understanding of the underlying principles. The evolving nature of the field is also acknowledged, with some users mentioning more recent advancements that aren't covered in the book. Finally, there's a brief discussion about the role of online courses versus traditional textbooks in learning machine learning, with varying opinions on their respective merits.