GCC 15 introduces several usability enhancements. Improved diagnostics offer more concise and helpful error messages, including location information within macros and clearer explanations for common mistakes. The new -fanalyzer
option provides static analysis capabilities to detect potential issues like double-free errors and use-after-free vulnerabilities. Link-time optimization (LTO) is more robust with improved diagnostics, and the compiler can now generate more efficient code for specific targets like Arm and x86. Additionally, improved support for C++20 and C2x features simplifies development with modern language standards. Finally, built-in functions for common mathematical operations have been optimized, potentially improving performance without requiring code changes.
Mads Tofte's "Four Lectures on Standard ML" provides a concise introduction to the core concepts of SML. It covers the fundamental aspects of the language, including its type system with polymorphism and type inference, its support for functional programming with higher-order functions, and its module system for structuring large programs. The lectures emphasize clarity and practicality, demonstrating how these features contribute to writing reliable and reusable code. Examples illustrate key concepts like pattern matching, data structures, and abstract data types. The text aims to provide a solid foundation for further exploration of SML and its applications.
Hacker News users discuss Mads Tofte's "Four Lectures on Standard ML" with appreciation for its clarity and historical context. Several commenters highlight the document as an excellent introduction to ML and type inference, praising its conciseness and accessibility compared to more modern resources. Some note the significance of seeing the language presented shortly after its creation, offering a glimpse into its original design principles. The lack of dependent types is mentioned, with one commenter pointing out that adding them would significantly alter ML's straightforward type inference. Others discuss the influence of ML on later languages like Haskell and OCaml, and the enduring relevance of its core concepts. A few users reminisce about their experiences learning ML and using related tools like SML/NJ.
The blog post "An epic treatise on error models for systems programming languages" explores the landscape of error handling strategies, arguing that current approaches in languages like C, C++, Go, and Rust are insufficient for robust systems programming. It criticizes unchecked exceptions for their potential to cause undefined behavior and resource leaks, while also finding fault with error codes and checked exceptions for their verbosity and tendency to hinder code flow. The author advocates for a more comprehensive error model based on "algebraic effects," which allows developers to precisely define and handle various error scenarios while maintaining control over resource management and program termination. This approach aims to combine the benefits of different error handling mechanisms while mitigating their respective drawbacks, ultimately promoting greater reliability and predictability in systems software.
HN commenters largely praised the article for its thoroughness and clarity in explaining error handling strategies. Several appreciated the author's balanced approach, presenting the tradeoffs of each model without overtly favoring one. Some highlighted the insightful discussion of checked exceptions and their limitations, particularly in relation to algebraic error types and error-returning functions. A few commenters offered additional perspectives, including the importance of distinguishing between recoverable and unrecoverable errors, and the potential benefits of static analysis tools in managing error handling. The overall sentiment was positive, with many thanking the author for providing a valuable resource for systems programmers.
This paper explores how Just-In-Time (JIT) compilers have evolved, aiming to provide a comprehensive overview for both newcomers and experienced practitioners. It covers the fundamental concepts of JIT compilation, tracing its development from early techniques like tracing JITs and method-based JITs to more modern approaches involving tiered compilation and adaptive optimization. The authors discuss key optimization techniques employed by JIT compilers, such as inlining, escape analysis, and register allocation, and analyze the trade-offs inherent in different JIT designs. Finally, the paper looks towards the future of JIT compilation, considering emerging challenges and research directions like hardware specialization, speculation, and the integration of machine learning techniques.
HN commenters generally express skepticism about the claims made in the linked paper attempting to make interpreters competitive with JIT compilers. Several doubt the benchmarks are representative of real-world workloads, suggesting they're too micro and don't capture the dynamic nature of typical programs where JITs excel. Some point out that the "interpreter" described leverages techniques like speculative execution and adaptive optimization, blurring the lines between interpretation and JIT compilation. Others note the overhead introduced by the proposed approach, particularly in terms of memory usage, might negate any performance gains. A few highlight the potential value in exploring alternative execution models but caution against overstating the current results. The lack of open-source code for the presented system also draws criticism, hindering independent verification and further exploration.
This blog post chronicles the author's weekend project of building a compiler for a simplified C-like language. It walks through the implementation of a lexical analyzer, parser (using recursive descent), and code generator targeting x86-64 assembly. The compiler handles basic arithmetic operations, variable declarations and assignments, if/else statements, and while loops. The post emphasizes simplicity and educational value over performance or completeness, providing a practical example of compiler construction principles in a digestible format. The code is available on GitHub for readers to explore and experiment with.
HN users largely praised the TinyCompiler project for its educational value, highlighting its clear code and approachable structure as beneficial for learning compiler construction. Several commenters discussed extending the compiler's functionality, such as adding support for different architectures or optimizing the generated code. Some pointed out similar projects or resources, like the "Let's Build a Compiler" tutorial and the Crafting Interpreters book. A few users questioned the "weekend" claim in the title, believing the project would take significantly longer for a novice to complete. The post also sparked discussion about the practical applications of such a compiler, with some suggesting its use for educational purposes or embedding in resource-constrained environments. Finally, there was some debate about the complexity of the compiler compared to more sophisticated tools like LLVM.
"Tiny Pointers" introduces a technique to reduce pointer size in C/C++ programs, thereby lowering memory usage without significantly impacting performance. The core idea involves restricting pointers to smaller regions of memory, enabling them to be represented with fewer bits. The paper details several methods for achieving this, including static analysis, profile-guided optimization, and dynamic recompilation. Experimental results demonstrate memory savings of up to 40% with negligible performance overhead in various benchmarks and real-world applications. This approach offers a promising solution for memory-constrained environments, particularly embedded systems and mobile devices.
HN users discuss the implications of "tiny pointers," focusing on potential performance improvements and drawbacks. Some doubt the practicality due to increased code complexity and the overhead of managing pointer metadata. Concerns are raised about compatibility with existing codebases and the potential for fragmentation in the memory allocator. Others express interest in exploring this concept further, particularly its application in specific scenarios like embedded systems or custom memory allocators where fine-grained control over memory is crucial. There's also discussion on whether the claimed benefits would outweigh the costs in real-world applications, with some suggesting that traditional optimization techniques might be more effective. A few commenters point out similar existing techniques like tagged pointers and debate the novelty of this approach.
The blog post explores various methods for generating Static Single Assignment (SSA) form, a crucial intermediate representation in compilers. It starts with the basic concepts of SSA, explaining dominance and phi functions. Then, it delves into different algorithms for SSA construction, including the classic dominance frontier algorithm and the more modern Cytron et al. algorithm. The post emphasizes the performance implications of these algorithms, highlighting how Cytron's approach optimizes placement of phi functions. It also touches upon less common methods like the iterative and memory-efficient Chaitin-Briggs algorithm. Finally, it briefly discusses register allocation and how SSA simplifies this process by providing a clear data flow representation.
HN users generally agreed with the author's premise that Single Static Assignment (SSA) form is beneficial for compiler optimization. Several commenters delved into the nuances of different SSA construction algorithms, highlighting Cytron et al.'s algorithm for its efficiency and prevalence. The discussion also touched on related concepts like minimal SSA, pruned SSA, and the challenges of handling irreducible control flow graphs. Some users pointed out practical considerations like register allocation and the trade-offs between SSA forms. One commenter questioned the necessity of SSA for modern optimization techniques, sparking a brief debate about its relevance. Others offered additional resources, including links to relevant papers and implementations.
The blog post argues for an intermediate representation (IR) layer in query compilers between the logical plan and the physical plan, called the "relational algebra IR." This layer would represent queries in a standardized, relational algebra form, enabling greater portability and reusability of optimization rules across different physical execution engines. Currently, optimization logic is often tightly coupled to specific physical plans, making it difficult to adapt to new engines or hardware. By introducing this standardized relational algebra IR, query compilers can achieve better modularity and extensibility, simplifying development and allowing for easier experimentation with new optimization strategies without needing to rewrite code for each backend. This ultimately leads to more efficient query execution across diverse environments.
HN commenters generally agree with the author's premise that a middle tier is missing in query compilers, sitting between logical optimization and physical optimization. This tier would handle "cross-physical plan" optimizations, allowing for better cost-based decisions that consider different physical plan choices holistically rather than sequentially. Some discuss the challenges in implementing this, particularly the explosion of search space and the difficulty in accurately costing plans. Others offer specific examples where such a tier would be beneficial, such as selecting join algorithms based on data distribution or optimizing for specific hardware like GPUs. A few commenters mention existing systems that implement similar concepts, though not necessarily as a distinct tier, suggesting the idea is already being explored in practice. Some debate the practicality of the proposed solution, suggesting alternative approaches like adaptive query execution or learned optimizers.
The blog post details methods for eliminating left and mutual recursion in context-free grammars, crucial for parser construction. Left recursion, where a non-terminal derives itself as the leftmost symbol, is problematic for top-down parsers. The post demonstrates how to remove direct left recursion using factorization and substitution. It then explains how to handle indirect left recursion by ordering non-terminals and systematically applying the direct recursion removal technique. Finally, it addresses mutual recursion, where two or more non-terminals derive each other, converting it into direct left recursion, which can then be eliminated using the previously described methods. The post uses concrete examples to illustrate these transformations, making it easier to understand the process of converting a grammar into a parser-friendly form.
Hacker News users discussed the potential inefficiency of the presented left-recursion elimination algorithm, particularly its reliance on repeated string concatenation. They suggested alternative approaches using stacks or accumulating results in a list for better performance. Some commenters questioned the necessity of fully eliminating left recursion in all cases, pointing out that modern parsing techniques, like packrat parsing, can handle left-recursive grammars directly. The lack of formal proofs or performance comparisons with established methods was also noted. A few users discussed the benefits and drawbacks of different parsing libraries and techniques, including ANTLR and various parser combinator libraries.
Astral is a new static type checker being developed for Python that aims to be faster and more ergonomic than existing options like MyPy. It leverages a new type inference algorithm designed for performance and boasts features like auto-completion, goto-definition, and an improved developer experience. The project is still early in development but claims significant speed improvements, with a goal of being at least 5x faster than MyPy on real-world codebases. Astral also intends to offer seamless integration with existing Python tooling and provide enhanced support for popular libraries like NumPy and Pandas.
Hacker News users discuss Astral's potential, drawing parallels to MyPy but with a focus on performance. Some express skepticism about static typing in Python, questioning its necessity and impact on the language's flexibility. Others are interested in Astral's approach to gradual typing and its ability to handle complex codebases. Performance improvements over MyPy are frequently mentioned as a key benefit. Several commenters inquire about specific features, such as handling metaclasses and integration with existing tools. Overall, there's a mix of cautious optimism and interest in seeing how Astral develops.
Mukul Rathi details his journey of creating a custom programming language, focusing on the compiler construction process. He explains the key stages involved, from lexing (converting source code into tokens) and parsing (creating an Abstract Syntax Tree) to code generation and optimization. Rathi uses his language, which he implements in OCaml, to illustrate these concepts, providing code examples and explanations of how each component works together to transform high-level code into executable machine instructions. He emphasizes the importance of understanding these foundational principles for anyone interested in building their own language or gaining a deeper appreciation for how programming languages function.
Hacker News users generally praised the article for its clarity and accessibility in explaining compiler construction. Several commenters appreciated the author's approach of building a complete, albeit simple, language instead of just a toy example. Some pointed out the project's similarity to the "Let's Build a Compiler" series, while others suggested alternative or supplementary resources like Crafting Interpreters and the LLVM tutorial. A few users discussed the tradeoffs between hand-written lexers/parsers and using parser generator tools, and the challenges of garbage collection implementation. One commenter shared their personal experience of writing a language and the surprising complexity of seemingly simple features.
Summary of Comments ( 17 )
https://news.ycombinator.com/item?id=43643886
Hacker News users generally expressed appreciation for the continued usability improvements in GCC. Several commenters highlighted the value of the improved diagnostics, particularly the location information and suggestions, making debugging significantly easier. Some discussed the importance of such advancements for both novice and experienced programmers. One commenter noted the surprisingly rapid adoption of these improvements in Fedora's GCC packages. Others touched on broader topics like the challenges of maintaining large codebases and the benefits of static analysis tools. A few users shared personal anecdotes of wrestling with confusing GCC error messages in the past, emphasizing the positive impact of these changes.
The Hacker News post titled "Usability Improvements in GCC 15" linking to a Red Hat developer article about the same topic has several comments discussing various aspects of GCC and its usability improvements.
Several users expressed appreciation for the improvements, particularly the improved diagnostics. One commenter highlighted the value of clear error messages, especially for beginners, noting that cryptic compiler errors can be a major hurdle. They specifically called out the improvement in locating missing headers as a welcome change.
Another commenter focused on the practical benefits of the improved location information in diagnostics. They explained that having more precise location information makes it significantly easier to pinpoint the source of errors, particularly in complex codebases or when dealing with preprocessed code where the original source location can be obscured. This, they argue, leads to faster debugging and improved developer productivity.
The discussion also touched upon the wider compiler landscape. One user expressed a preference for Clang's error messages, suggesting they find them generally clearer than GCC's, even with the improvements in GCC 15. This sparked a small debate, with another user countering that recent GCC versions have made significant strides in diagnostic quality and are now comparable to, if not better than, Clang in some cases.
One commenter brought up the topic of colored diagnostics, mentioning that while some find them helpful, others, including themselves, prefer monochrome output. This preference was attributed to the commenter's habit of reading logs in
less
, where colors can be disruptive.The conversation also drifted towards the importance of tooling and how IDE integration can enhance the usability of compiler diagnostics. A user pointed out that IDEs can leverage the improved location information to provide a more interactive debugging experience, allowing developers to jump directly to the problematic code.
Finally, a commenter mentioned the -fdiagnostics-color option, highlighting its utility for enabling colored diagnostics. This comment served as a practical tip for those interested in taking advantage of this feature.