Eli Lipsitz has introduced Game Bub, an open-source handheld console built around a Field-Programmable Gate Array (FPGA) designed for accurate retro game emulation. Unlike software emulation, the FPGA hardware recreates the original consoles' logic, offering cycle-accurate performance. The device features a 3.5-inch LCD, familiar gamepad controls, and a MicroSD card slot for ROMs. All design files, including the hardware schematics, FPGA code, and 3D-printable case designs, are available on GitHub, enabling others to build, modify, and improve the project. While currently focused on Game Boy, Game Boy Color, and Game Boy Advance titles, future expansion to other systems is possible.
The "R1 Computer Use" document outlines strict computer usage guidelines for a specific group (likely employees). It prohibits personal use, unauthorized software installation, and accessing inappropriate content. All computer activity is subject to monitoring and logging. Users are responsible for keeping their accounts secure and reporting any suspicious activity. The policy emphasizes the importance of respecting intellectual property and adhering to licensing agreements. Deviation from these rules may result in disciplinary action.
Hacker News commenters on the "R1 Computer Use" post largely focused on the impracticality of the system for modern usage. Several pointed out the extremely slow speed and limited storage, making it unsuitable for anything beyond very basic tasks. Some appreciated the historical context and the demonstration of early computing, while others questioned the value of emulating such a limited system. The discussion also touched upon the challenges of preserving old software and hardware, with commenters noting the difficulty in finding working components and the expertise required to maintain these systems. A few expressed interest in the educational aspects, suggesting its potential use for teaching about the history of computing or demonstrating fundamental computer concepts.
T1 is an open-source, research-oriented implementation of a RISC-V vector processor. It aims to explore the microarchitecture tradeoffs of the RISC-V vector extension (RVV) by providing a configurable and modular platform for experimentation. The project includes a synthesizable core written in SystemVerilog, a software toolchain, and a cycle-accurate simulator. T1 allows researchers to modify various parameters, such as vector register file size, number of functional units, and memory subsystem configuration, to evaluate their impact on performance and area. Its primary goal is to advance RISC-V vector processing research and foster collaboration within the community.
Hacker News users discuss the open-sourced T1 RISC-V vector processor, expressing excitement about its potential and implications. Several commenters praise its transparency, contrasting it with proprietary vector extensions. The modular and scalable design is highlighted, making it suitable for diverse applications. Some discuss the potential impact on education, enabling hands-on learning of vector processor design. Others express interest in seeing benchmark comparisons and exploring potential uses in areas like AI acceleration and HPC. Some question its current maturity and performance compared to existing solutions. The lack of clear licensing information is also raised as a concern.
This project details the creation of a minimalist 64x4 pixel home computer built using readily available components. It features a custom PCB, an ATmega328P microcontroller, a MAX7219 LED matrix display, and a PS/2 keyboard for input. The computer boasts a simple command-line interface and includes several built-in programs like a text editor, calculator, and games. The design prioritizes simplicity and low cost, aiming to be an educational tool for understanding fundamental computer architecture and programming. The project is open-source, providing schematics, code, and detailed build instructions.
HN commenters generally expressed admiration for the project's minimalism and ingenuity. Several praised the clear documentation and the creator's dedication to simplicity, with some highlighting the educational value of such a barebones system. A few users discussed the limitations of the 4-line display, suggesting potential improvements or alternative uses like a dedicated clock or notification display. Some comments focused on the technical aspects, including the choice of components and the challenges of working with such limited resources. Others reminisced about early computing experiences and similar projects they had undertaken. There was also discussion of the definition of "minimal," comparing this project to other minimalist computer designs.
Summary of Comments ( 42 )
https://news.ycombinator.com/item?id=43027335
Hacker News users discussed the Game Bub, an open-source FPGA retro emulation handheld. Several commenters expressed excitement about the project, praising its open-source nature and the potential for customization. Some questioned the choice of using an iCE40 FPGA, considering its limited resources compared to other options, particularly for more demanding systems like the PlayStation. The project's reliance on a soft CPU core for some systems also drew some skepticism about performance. Others raised concerns about battery life and the overall cost, but many remained optimistic about the Game Bub's potential, especially for simpler 8-bit and 16-bit systems. There was interest in seeing future updates and improvements to the project.
The Hacker News post for "Show HN: Game Bub – open-source FPGA retro emulation handheld" generated a fair amount of discussion, with many commenters expressing enthusiasm for the project and its open-source nature.
Several commenters praised the creator for choosing an FPGA approach, highlighting its accuracy compared to software emulation. They appreciated the ability to accurately replicate the original hardware's quirks and timing, which is often difficult to achieve with software. This focus on accuracy resonated with users who value authentic retro gaming experiences.
Some commenters delved into technical details, discussing the choice of the Lattice MachXO2 FPGA and its capabilities. Others inquired about specific features, such as save state support, the potential for adding more cores to emulate a wider range of systems, and the possibility of using different FPGA boards. The creator actively engaged with these comments, providing answers and insights into the project's design and future plans.
A few commenters shared their own experiences with FPGA-based retro gaming projects, offering suggestions and resources. There was a brief discussion about the complexities of FPGA development and the learning curve involved, with some acknowledging the steep but rewarding nature of the process.
Several expressed interest in purchasing a pre-built version of the Game Bub, demonstrating a potential market for the device. The discussion also touched on the cost of components and the challenges of sourcing them, particularly in the current electronics market.
Overall, the comments reflected a positive reception to the Game Bub project, with many praising its open-source nature, the choice of FPGA for accurate emulation, and the creator's willingness to engage with the community. The discussion highlighted the growing interest in FPGA-based retro gaming and the potential for open-source hardware projects in this space.