VSC is an open-source 3D rendering engine written in C++. It aims to be a versatile, lightweight, and easy-to-use solution for various rendering needs. The project is hosted on GitHub and features a physically based renderer (PBR) supporting features like screen-space reflections, screen-space ambient occlusion, and global illumination using a path tracer. It leverages Vulkan for cross-platform graphics processing and supports integration with the Dear ImGui library for UI development. The engine's design prioritizes modularity and extensibility, encouraging contributions and customization.
Vincent Woo created an interactive 3D model of San Francisco's Sutro Tower using the Gaussian Splatting technique. This allows users to virtually explore the intricate structure of the tower with impressive detail and smooth performance in a web browser. The model is based on a real-world point cloud captured with lidar, offering a realistic and immersive experience of this iconic landmark.
Hacker News users generally praised the Sutro Tower 3D model, calling it "amazing," "very cool," and "impressive." Several commenters appreciated the technical aspects, noting the clever use of Gaussian Splats and the smooth performance even on mobile devices. Some discussed the model's size and loading time, with one suggesting potential optimizations like level-of-detail rendering. Others compared it to other 3D capture techniques like photogrammetry, pointing out the differences in visual style and data requirements. A few commenters also shared personal anecdotes about Sutro Tower, reflecting on its iconic presence in San Francisco.
Post-processing shaders offer a powerful creative medium for transforming images and videos beyond traditional photography and filmmaking. By applying algorithms directly to rendered pixels, artists can achieve stylized visuals, simulate physical phenomena, and even correct technical imperfections. This blog post explores the versatility of post-processing, demonstrating how shaders can create effects like bloom, depth of field, color grading, and chromatic aberration, unlocking a vast landscape of artistic expression and allowing creators to craft unique and evocative imagery. It advocates learning the underlying principles of shader programming to fully harness this potential and emphasizes the accessibility of these techniques using readily available tools and frameworks.
Hacker News users generally praised the article's exploration of post-processing shaders for creative visual effects. Several commenters appreciated the technical depth and clear explanations, highlighting the potential of shaders beyond typical "Instagram filter" applications. Some pointed out the connection to older demoscene culture and the satisfaction of crafting visuals algorithmically. Others discussed the performance implications of complex shaders and suggested optimization strategies. A few users shared links to related resources and tools, including Shadertoy and Godot's visual shader editor. The overall sentiment was positive, with many expressing interest in exploring shaders further.
Radiant Foam introduces a novel real-time differentiable ray tracer. By leveraging sparsity and implementing custom CUDA kernels, it achieves interactive performance while maintaining differentiability, enabling gradient-based optimization for tasks like inverse rendering, material estimation, and scene reconstruction. The system supports various features including global illumination, volumetric rendering, and differentiable sampling, offering a powerful tool for research and development in computer graphics and related fields. Its core contribution lies in its efficient handling of gradients throughout the ray tracing process, allowing for effective optimization even with complex scenes and lighting.
HN users discuss Radiant Foam's potential and limitations. Some praise its innovative approach to differentiable rendering, highlighting the possibilities for material and lighting design, as well as applications in robotics and inverse rendering. Others express skepticism about its practical use due to performance concerns, particularly the computational cost of path tracing for real-time applications. Several commenters question the novelty of the approach, comparing it to existing differentiable renderers and noting the inherent challenges of gradient-based optimization in rendering. The discussion also touches on the project's open-source nature and the possibility of GPU acceleration. Several commenters inquire about specific features and limitations, such as support for complex materials and the impact of different sampling strategies.
Ratzilla is a playful demo showcasing a technical experiment in real-time 3D rendering within a web browser. It features a giant rat model, humorously named "Ratzilla," stomping around a simplified cityscape. The project explores techniques for efficient rendering of complex models using WebGPU, a new web standard offering direct access to the device's graphics processing unit (GPU). The demo aims to push the boundaries of what's possible in web-based graphics while maintaining acceptable performance. Though still a prototype, Ratzilla demonstrates the potential of WebGPU for creating compelling and interactive 3D experiences directly within the browser, without the need for plugins or external applications.
HN commenters were impressed with Ratzilla's performance and clever approach to pathfinding using a tiny neural network. Several questioned the practical applications beyond the demo, wondering about its suitability for real-world robotics and complex environments. Some discussed the limitations of the small neural network and potential challenges in scaling the project. Others praised the clear and concise explanation provided on the project's website, along with the accessibility of the demo. A few users pointed out the similarities and differences with other pathfinding algorithms like A*. Overall, the comment section expressed admiration for the technical achievement while maintaining a pragmatic view of its potential.
This blog post breaks down the "Tiny Clouds" Shadertoy by iq, explaining its surprisingly simple yet effective cloud rendering technique. The shader uses raymarching through a 3D noise function, but instead of directly visualizing density, it calculates the amount of light scattered backwards towards the viewer. This is achieved by accumulating the density along the ray and weighting it based on the distance traveled, effectively simulating how light scatters more in denser areas. The post further analyzes the specific noise function used, which combines several octaves of Simplex noise for detail, and discusses how the scattering calculations create a sense of depth and illumination. Finally, it offers variations and potential improvements, such as adding lighting controls and exploring different noise functions.
Commenters on Hacker News largely praised the "Tiny Clouds" shader's elegance and efficiency, admiring the author's ability to create such a visually appealing effect with minimal code. Several discussed the clever use of trigonometric functions and noise to generate the cloud shapes, and some delved into the specifics of raymarching and signed distance fields. A few users shared their own experiences experimenting with similar techniques, and offered suggestions for further exploration, like adding lighting variations or animation. One commenter linked to a related Shadertoy example showcasing a different approach to cloud rendering, prompting a brief comparison of the two methods. Overall, the discussion highlighted the technical ingenuity behind the shader and fostered a sense of appreciation for its concise yet powerful implementation.
Summary of Comments ( 14 )
https://news.ycombinator.com/item?id=43339584
Hacker News users discuss the open-source 3D rendering engine, VSC, with a mix of curiosity and skepticism. Some question the project's purpose and target audience, wondering if it aims to be a game engine or something else. Others point to a lack of documentation and unclear licensing, making it difficult to evaluate the project's potential. Several commenters express concern about the engine's performance and architecture, particularly its use of single-threaded rendering and a seemingly unconventional approach to scene management. Despite these reservations, some find the project interesting, praising the clean code and expressing interest in seeing further development, particularly with improved documentation and benchmarking. The overall sentiment leans towards cautious interest with a desire for more information to properly assess VSC's capabilities and goals.
The Hacker News post titled "Show HN: VSC – An open source 3D Rendering Engine in C++" has generated several comments discussing various aspects of the project.
Several commenters praised the project's ambition and the effort put into creating a 3D rendering engine. One user expressed admiration for tackling such a complex project, particularly the implementation of features like ray tracing. Another commenter appreciated the clear documentation and the decision to use C++, noting its suitability for performance-intensive tasks like rendering.
Some commenters focused on the project's potential applications and its learning value. One user suggested exploring the use of the engine for creating visualizations of scientific data or simulations. Another pointed out the educational benefit of open-sourcing such a project, allowing others to learn from the code and contribute to its development. The cross-platform compatibility of the engine, supporting Windows and Linux, was also highlighted as a positive aspect.
There was a discussion on the project's current stage of development and future directions. A commenter inquired about the roadmap for the project and the planned features. Another user suggested potential improvements, such as exploring other rendering techniques or optimizing existing ones. The use of a specific library, Dear ImGui, for the user interface was also mentioned.
Some technical details were also discussed, including the use of specific technologies and libraries. A commenter asked about the usage of SIMD instructions and their impact on performance. Another mentioned the use of Vulkan, a low-overhead graphics API.
Finally, there were comments related to the project's licensing and the challenges of maintaining an open-source project. One commenter inquired about the specific open-source license used for the project. Another acknowledged the dedication required to maintain such a project and encouraged the creator to continue their work.