Jürgen Schmidhuber's "Matters Computational" provides a comprehensive overview of computer science, spanning its theoretical foundations and practical applications. It delves into topics like algorithmic information theory, computability, complexity theory, and the history of computation, including discussions of Turing machines and the Church-Turing thesis. The book also explores the nature of intelligence and the possibilities of artificial intelligence, covering areas such as machine learning, neural networks, and evolutionary computation. It emphasizes the importance of self-referential systems and universal problem solvers, reflecting Schmidhuber's own research interests in artificial general intelligence. Ultimately, the book aims to provide a unifying perspective on computation, bridging the gap between theoretical computer science and the practical pursuit of artificial intelligence.
The blog post explores the limitations of formal systems, particularly in discerning truth. It uses the analogy of two goblins, one always truthful and one always lying, to demonstrate how relying solely on a system's rules, without external context or verification, can lead to accepting falsehoods as truths. Even with additional rules added to account for the goblins' lying, clever manipulation can still exploit the system. The post concludes that formal systems, while valuable for structuring thought, are ultimately insufficient for determining truth without external validation or a connection to reality. This highlights the need for critical thinking and skepticism even when dealing with seemingly rigorous systems.
The Hacker News comments generally praise the clarity and engaging presentation of the article's topic (formal systems and the halting problem, illustrated by a lying goblin puzzle). Several commenters discuss the philosophical implications of the piece, particularly regarding the nature of truth and provability within defined systems. Some draw parallels to Gödel's incompleteness theorems, while others offer alternate goblin scenarios or slight modifications to the puzzle's rules. A few commenters suggest related resources, such as Raymond Smullyan's work, which explores similar logical puzzles. There's also a short thread discussing the potential applicability of these concepts to legal systems and contract interpretation.
This paper explores using first-order logic (FOL) to detect logical fallacies in natural language arguments. The authors propose a novel approach that translates natural language arguments into FOL representations, leveraging semantic role labeling and a defined set of predicates to capture argument structure. This structured representation allows for the application of automated theorem provers to evaluate the validity of the arguments, thus identifying potential fallacies. The research demonstrates improved performance compared to existing methods, particularly in identifying fallacies related to invalid argument structure, while acknowledging limitations in handling complex linguistic phenomena and the need for further refinement in the translation process. The proposed system provides a promising foundation for automated fallacy detection and contributes to the broader field of argument mining.
Hacker News users discussed the potential and limitations of using first-order logic (FOL) for fallacy detection as described in the linked paper. Some praised the approach for its rigor and potential to improve reasoning in AI, while also acknowledging the inherent difficulty of translating natural language to FOL perfectly. Others questioned the practical applicability, citing the complexity and ambiguity of natural language as major obstacles, and suggesting that statistical/probabilistic methods might be more robust. The difficulty of scoping the domain knowledge necessary for FOL translation was also brought up, with some pointing out the need for extensive, context-specific knowledge bases. Finally, several commenters highlighted the limitations of focusing solely on logical fallacies for detecting flawed reasoning, suggesting that other rhetorical tactics and nuances should also be considered.
The paper "Efficient Reasoning with Hidden Thinking" introduces Hidden Thinking Networks (HTNs), a novel architecture designed to enhance the efficiency of large language models (LLMs) in complex reasoning tasks. HTNs augment LLMs with a differentiable "scratchpad" that allows them to perform intermediate computations and logical steps, mimicking human thought processes during problem-solving. This hidden thinking process is learned through backpropagation, enabling the model to dynamically adapt its reasoning strategies. By externalizing and making the reasoning steps differentiable, HTNs aim to improve transparency, controllability, and efficiency compared to standard LLMs, which often struggle with multi-step reasoning or rely on computationally expensive prompting techniques like chain-of-thought. The authors demonstrate the effectiveness of HTNs on various reasoning tasks, showcasing their potential for more efficient and interpretable problem-solving with LLMs.
Hacker News users discussed the practicality and implications of the "Hidden Thinking" paper. Several commenters expressed skepticism about the real-world applicability of the proposed method, citing concerns about computational cost and the difficulty of accurately representing complex real-world problems within the framework. Some questioned the novelty of the approach, comparing it to existing techniques like MCTS (Monte Carlo Tree Search) and pointing out potential limitations in scaling and handling uncertainty. Others were more optimistic, seeing potential applications in areas like game playing and automated theorem proving, while acknowledging the need for further research and development. A few commenters also discussed the philosophical implications of machines engaging in "hidden thinking," raising questions about transparency and interpretability.
This article dissects the structure of a formal mathematical proof, illustrating it with a simple example about even and odd numbers. It emphasizes the distinction between informal proofs aimed at human understanding and formal proofs designed for automated verification. Formal proofs meticulously lay out every logical step, referencing specific axioms and inference rules within a chosen formal system. This detailed approach, while tedious for humans, enables computer-assisted verification and eliminates ambiguity, ensuring absolute rigor. The article highlights the importance of choosing appropriate axioms and the role of proof assistants in constructing and checking these complex formal structures, ultimately increasing confidence in mathematical results.
HN commenters discuss the accessibility of formal proof systems, particularly referencing Lean. Some express excitement about the potential of formal proofs to revolutionize mathematics, while others are more skeptical, citing the steep learning curve and questioning the practical benefits for most mathematicians. Several commenters debate the role of intuition versus rigor in mathematical practice, with some arguing that formalization can enhance understanding and others suggesting it might stifle creativity. The feasibility of formalizing existing mathematical knowledge is also discussed, with varying opinions on the timescale and resources required for such a project. Some users highlight the potential of AI in assisting with formalization efforts, while others remain cautious about its current capabilities. The overall tone is one of cautious optimism, acknowledging the challenges but also recognizing the potential transformative power of formal proof systems.
SudokuVariants.com lets you play and create a wide variety of Sudoku puzzles beyond the classic 9x9 grid. The website offers different grid sizes, shapes, and rule sets, including variations like Killer Sudoku, Irregular Sudoku, and even custom rule combinations. Users can experiment with existing variants or design their own unique Sudoku challenges using a visual editor, and then share their creations with others via a generated link. The site aims to provide a comprehensive platform for both playing and exploring the vast possibilities within the Sudoku puzzle format.
Hacker News users generally expressed interest in the SudokuVariants website. Several praised its clean design and the variety of puzzles offered. Some found the "construct your own variant" feature particularly appealing, and one user suggested adding a difficulty rating system for user-created puzzles. A few commenters mentioned specific variant recommendations, including "Killer Sudoku" and a variant with prime number constraints. There was also a brief discussion about the underlying logic and algorithms involved in generating and solving these puzzles. One user pointed out that some extreme variants might be NP-complete, implying significant computational challenges for larger grids or complex rules.
Summary of Comments ( 11 )
https://news.ycombinator.com/item?id=43288861
HN users discuss the density and breadth of "Matters Computational," praising its unique approach to connecting diverse computational topics. Several commenters highlight the book's treatment of randomness, floating-point arithmetic, and the FFT as particularly insightful. The author's background in physics is noted, contributing to the book's distinct perspective. Some find the book challenging, requiring multiple readings to fully grasp the concepts. The free availability of the PDF is appreciated, and its enduring relevance a decade after publication is also remarked upon. A few commenters express interest in a physical copy, while others suggest potential updates or expansions on certain topics.
The Hacker News post titled "Matters Computational (2010) [pdf]" linking to a PDF of Jörg Fliege's book "Matters Computational" has a moderate number of comments, discussing various aspects of the book and computational mathematics in general.
Several commenters praise the book's comprehensive nature and clarity. One user highlights its value as a reference for "all sorts of basic algorithms and data structures," appreciating the detailed explanations and pseudocode provided. They specifically mention its usefulness for understanding fundamental concepts like numerical stability.
Another commenter focuses on the book's treatment of linear algebra, noting its depth and accessibility, even for those without a strong mathematical background. They contrast it with other resources they found less helpful.
A few comments delve into specific topics covered in the book. One user discusses the exploration of floating-point arithmetic and its associated challenges, acknowledging the importance of understanding these concepts for anyone working with numerical computations. Another highlights the chapter on optimization, mentioning its practical value and the inclusion of various optimization algorithms.
Some commenters offer broader perspectives on computational mathematics and its role in computer science. One reflects on the importance of a strong mathematical foundation for software engineers, advocating for more emphasis on these concepts in education.
The discussion also touches on the book's availability. The author's decision to make it freely available is commended, with some users expressing gratitude for open access to such valuable educational resources. A link to the author's webpage is shared, offering further context.
While a number of commenters express interest in the book based on the description and other comments, there isn't extensive engagement in deep technical discussions. The overall sentiment is positive, with the comments primarily focusing on the book's breadth, clarity, and value as a resource for understanding fundamental computational concepts.