Researchers at Linköping University, Sweden, have developed a new method for producing perovskite LEDs that are significantly cheaper and more environmentally friendly than current alternatives. By replacing expensive and toxic elements like lead and gold with more abundant and benign materials like copper and silver, and by utilizing a simpler solution-based fabrication process at room temperature, they've dramatically lowered the cost and environmental impact of production. This breakthrough paves the way for wider adoption of perovskite LEDs in various applications, offering a sustainable and affordable lighting solution for the future.
Baidu claims their new Ernie 3.5 Titan model achieves performance comparable to GPT-4 at significantly lower cost. This enhanced model boasts improvements in training efficiency and inference speed, alongside upgrades to its comprehension, generation, and reasoning abilities. These advancements allow for more efficient and cost-effective deployment for various applications.
HN users discuss the claim of GPT 4.5 level performance at significantly reduced cost. Some express skepticism, citing potential differences in context windows, training data quality, and reasoning abilities not reflected in simple benchmarks. Others point out the rapid pace of open-source development, suggesting similar capabilities might become even cheaper soon. Several commenters eagerly anticipate trying the new model, while others raise concerns about the lack of transparency regarding training data and potential biases. The feasibility of running such a model locally also generates discussion, with some highlighting hardware requirements as a potential barrier. There's a general feeling of cautious optimism, tempered by a desire for more concrete evidence of the claimed performance.
AWS researchers have developed a new type of qubit called the "cat qubit" which promises more effective and affordable quantum error correction. Cat qubits, based on superconducting circuits, are more resistant to noise, a major hurdle in quantum computing. This increased resilience means fewer physical qubits are needed for logical qubits, significantly reducing the overhead required for error correction and making fault-tolerant quantum computers more practical to build. AWS claims this approach could bring the million-qubit requirement for complex calculations down to thousands, dramatically accelerating the timeline for useful quantum computation. They've demonstrated the feasibility of their approach with simulations and are currently building physical cat qubit hardware.
HN commenters are skeptical of the claims made in the article. Several point out that "effective" and "affordable" are not quantified, and question whether AWS's cat qubits truly offer a significant advantage over other approaches. Some doubt the feasibility of scaling the technology, citing the engineering challenges inherent in building and maintaining such complex systems. Others express general skepticism about the hype surrounding quantum computing, suggesting that practical applications are still far off. A few commenters offer more optimistic perspectives, acknowledging the technical hurdles but also recognizing the potential of cat qubits for achieving fault tolerance. The overall sentiment, however, leans towards cautious skepticism.
Frustrated with slow turnaround times and inconsistent quality from outsourced data labeling, the author's company transitioned to an in-house labeling team. This involved hiring a dedicated manager, creating clear documentation and workflows, and using a purpose-built labeling tool. While initially more expensive, the shift resulted in significantly faster iteration cycles, improved data quality through closer collaboration with engineers, and ultimately, a better product. The author champions this approach for machine learning projects requiring high-quality labeled data and rapid iteration.
Several HN commenters agreed with the author's premise that data labeling is crucial and often overlooked. Some pointed out potential drawbacks of in-housing, like scaling challenges and maintaining consistent quality. One commenter suggested exploring synthetic data generation as a potential solution. Another shared their experience with successfully using a hybrid approach of in-house and outsourced labeling. The potential benefits of domain expertise from in-house labelers were also highlighted. Several users questioned the claim that in-housing is "always" better, advocating for a more nuanced cost-benefit analysis depending on the specific project and resources. Finally, the complexities and high cost of building and maintaining labeling tools were also discussed.
Austrian cloud provider Anexia has migrated 12,000 virtual machines from VMware to its own internally developed KVM-based platform, saving millions of euros annually in licensing costs. Driven by the desire for greater control, flexibility, and cost savings, Anexia spent three years developing its own orchestration, storage, and networking solutions to underpin the new platform. While acknowledging the complexity and effort involved, the company claims the migration has resulted in improved performance and stability, along with the substantial financial benefits.
Hacker News commenters generally praised Anexia's move away from VMware, citing cost savings and increased flexibility as primary motivators. Some expressed skepticism about the "homebrew" aspect of the new KVM platform, questioning its long-term maintainability and the potential for unforeseen issues. Others pointed out the complexities and potential downsides of such a large migration, including the risk of downtime and the significant engineering effort required. A few commenters shared their own experiences with similar migrations, offering both warnings and encouragement. The discussion also touched on the broader trend of moving away from proprietary virtualization solutions towards open-source alternatives like KVM. Several users questioned the wisdom of relying on a single vendor for such a critical part of their infrastructure, regardless of whether it's VMware or a custom solution.
Summary of Comments ( 111 )
https://news.ycombinator.com/item?id=43384697
HN commenters discuss the potential of perovskite LEDs, acknowledging their promise while remaining cautious about real-world applications. Several express skepticism about the claimed "cheapness" and "sustainability," pointing out the current limitations of perovskite stability and lifespan, particularly in comparison to established LED technologies. The lack of detailed information about production costs and environmental impact in the linked article fuels this skepticism. Some raise concerns about the toxicity of lead used in perovskites, questioning the "environmentally friendly" label. Others highlight the need for further research and development before perovskite LEDs can become a viable alternative, while also acknowledging the exciting possibilities if these challenges can be overcome. A few commenters offer additional resources and insights into the current state of perovskite research.
The Hacker News post titled "Next generation LEDs are cheap and sustainable" linking to a Swedish article about perovskite LEDs, generated a moderate discussion with several interesting points raised in the comments section.
Several commenters focused on the challenges associated with perovskite LEDs, particularly their stability issues. One commenter highlighted the inherent instability of perovskites in the presence of moisture and oxygen, emphasizing the need for robust encapsulation to ensure longevity. Another commenter echoed this concern, pointing out that while perovskites offer advantages in terms of cost and efficiency, their vulnerability to environmental factors remains a significant hurdle for commercial viability. This commenter specifically mentioned the problem of ion migration within the perovskite material leading to degradation.
The discussion also touched upon the potential applications of perovskite LEDs. One commenter suggested that their low cost and tunable color properties make them ideal candidates for displays, particularly large-area displays and potentially even flexible displays. Another comment explored the possibility of utilizing perovskite LEDs in lighting applications, particularly where high color rendering is desirable.
A couple of commenters expressed a cautious optimism regarding the technology. They acknowledged the promising aspects of perovskite LEDs but emphasized the importance of further research and development to address the stability concerns. One of these comments pointed out that while laboratory demonstrations are impressive, translating this success to mass production with consistent performance and lifespan remains a key challenge.
Finally, one commenter questioned the "cheap" claim in the title, arguing that while the materials themselves might be inexpensive, the manufacturing processes, especially those required for effective encapsulation to combat degradation, could add significant cost. This commenter suggested a more nuanced headline would be more appropriate.
In summary, the comments section reflected a measured response to the news of advancements in perovskite LEDs, acknowledging the potential while maintaining a realistic perspective on the challenges that still need to be overcome. The discussion revolved primarily around the stability issues, potential applications, and the overall cost-effectiveness of the technology.