The author envisions a future (2025 and beyond) where creating video games without a traditional game engine becomes increasingly viable. This is driven by advancements in web technologies like WebGPU, which offer native performance, and readily available libraries handling complex tasks like physics and rendering. Combined with the growing accessibility of AI tools for asset creation and potentially even gameplay logic, the barrier to entry for game development lowers significantly. This empowers smaller teams and individual developers to bring their unique game ideas to life, focusing on creativity rather than wrestling with complex engine setup and low-level programming. This shift mirrors the transition seen in web development, moving from manual HTML/CSS/JS to higher-level frameworks and tools.
The author details their process of compiling OCaml code to run on a TI-84 Plus CE calculator. They leveraged the calculator's existing C toolchain and the OCaml compiler's ability to output C code. After overcoming challenges like limited RAM and the absence of a dynamic linker, they successfully ran a simple "Hello, world!" program. The key innovations included statically linking the OCaml runtime and using a custom, minimized runtime configuration to fit within the calculator's memory constraints. This allowed for direct execution of OCaml bytecode on the calculator, offering a novel approach to programming these devices.
Hacker News users generally expressed enthusiasm for the project of compiling OCaml to a TI-84 calculator. Several commenters praised the technical achievement, highlighting the challenges of working with the calculator's limited resources. Some discussed potential educational benefits, suggesting it could be a powerful tool for teaching functional programming. Others reminisced about their own calculator programming experiences and pondered the possibility of porting other languages. A few users inquired about practical aspects like performance and library support. There was also some discussion comparing the project to other calculator-based language implementations and exploring potential future enhancements.
This blog post details how to boot an RP2040-based Raspberry Pi Pico W (RP2350) directly from UART, bypassing the usual flash memory boot process. This is achieved by leveraging the ROM bootloader's capability to accept code over UART0. The post provides Python code to send a UF2 file containing a custom linker script and modified boot2 code directly to the Pico W via its UART interface. This custom boot2 then loads subsequent data from the UART, allowing the execution of code without relying on flashed firmware, useful for debugging and development purposes. The process involves setting specific GPIO pins for bootsel mode, utilizing the picotool utility, and establishing a 115200 baud UART connection.
Hacker News users discuss various aspects of booting the RP2350 from UART. Several commenters appreciate the detailed blog post, finding it helpful and well-written. Some discuss alternative approaches like using a Raspberry Pi Pico as a USB-to-serial adapter or leveraging the RP2040's ROM bootloader. A few highlight the challenges of working with UART, including baud rate detection and potential instability. Others delve into the technical details, mentioning the RP2040's USB boot mode and comparing it to other microcontrollers. The overall sentiment is positive, with many praising the author for sharing their knowledge and experience.
Pascal for Small Machines explores the history and enduring appeal of Pascal, particularly its suitability for resource-constrained environments. The author highlights Niklaus Wirth's design philosophy of simplicity and efficiency, emphasizing how these principles made Pascal an ideal language for early microcomputers. The post discusses various Pascal implementations, from UCSD Pascal to modern variants, showcasing its continued relevance in embedded systems, retrocomputing, and educational settings. It also touches upon Pascal's influence on other languages and its role in shaping computer science education.
HN users generally praise the simplicity and elegance of Pascal, with several reminiscing about using Turbo Pascal. Some highlight its suitability for resource-constrained environments and embedded systems, comparing it favorably to C for such tasks. One commenter notes its use in the Apple Lisa and early Macs. Others discuss the benefits of strong typing and clear syntax for learning and maintainability. A few express interest in modern Pascal dialects like Free Pascal and Oxygene, while others debate the merits of static vs. dynamic typing. Some disagreement arises over whether Pascal's enforced structure is beneficial or restrictive for larger projects.
The article details a vulnerability discovered in the Linux kernel's vsock implementation, a mechanism for communication between virtual machines and their hosts. Specifically, a use-after-free vulnerability existed due to improper handling of VM shutdown, allowing a malicious guest VM to trigger a double free and gain control of the host kernel. This was achieved by manipulating vsock's connection handling during the shutdown process, causing the kernel to access freed memory. The vulnerability was ultimately patched by ensuring proper cleanup of vsock connections during VM termination, preventing the double free condition and subsequent exploitation.
Hacker News users discussed the potential attack surface introduced by vsock, generally agreeing with the article's premise but questioning the practicality of exploiting it. Some commenters pointed out that the reliance on shared memory makes vsock vulnerable to manipulation by a compromised host, mitigating the isolation benefits it ostensibly provides. Others noted that while interesting, exploiting vsock likely wouldn't be the easiest or most effective attack vector in most scenarios. The discussion also touched on existing mitigations within the hypervisor and the fact that vsock is often disabled by default, further limiting its exploitability. Several users highlighted the obscurity of vsock, suggesting the real security risk lies in poorly understood and implemented features rather than the protocol itself. A few questioned the article's novelty, claiming these vulnerabilities were already well-known within security circles.
"Compiler Reminders" serves as a concise cheat sheet for compiler development, particularly focusing on parsing and lexing. It covers key concepts like regular expressions, context-free grammars, and popular parsing techniques including recursive descent, LL(1), LR(1), and operator precedence. The post briefly explains each concept and provides simple examples, offering a quick refresher or introduction to the core components of compiler construction. It also touches upon abstract syntax trees (ASTs) and their role in representing parsed code. The post is meant as a handy reference for common compiler-related terminology and techniques, not a comprehensive guide.
HN users largely praised the article for its clear and concise explanations of compiler optimizations. Several commenters shared anecdotes of encountering similar optimization-related bugs, highlighting the practical importance of understanding these concepts. Some discussed specific compiler behaviors and corner cases, including the impact of volatile
keyword and undefined behavior. A few users mentioned related tools and resources, like Compiler Explorer and Matt Godbolt's talks. The overall sentiment was positive, with many finding the article a valuable refresher or introduction to compiler optimizations.
This blog post details how to implement a simplified printf
function for bare-metal environments, specifically ARM Cortex-M microcontrollers, without relying on a full operating system. The author walks through creating a minimal version that supports basic format specifiers like %c
, %s
, %u
, %x
, and %d
, bypassing the complexities of a standard C library. The implementation utilizes a UART for output and includes a custom integer to string conversion function. By directly manipulating registers and memory, the post demonstrates a lightweight printf
suitable for resource-constrained embedded systems.
HN commenters largely praised the article for its clear explanation of implementing printf
in a bare-metal environment. Several appreciated the author's focus on simplicity and avoiding unnecessary complexity. Some discussed the tradeoffs between code size and performance, with suggestions for further optimization. One commenter pointed out the potential issues with the implementation's handling of floating-point numbers, particularly in embedded systems where floating-point support might not be available. Others offered alternative approaches, including using smaller, more specialized printf
implementations or relying on semihosting for debugging. The overall sentiment was positive, with many finding the article educational and well-written.
A hobby operating system, RetrOS-32, built from scratch, is now functional on a vintage IBM ThinkPad. Written primarily in C and some assembly, it supports a 32-bit protected mode environment, features a custom kernel, and boasts a simple command-line interface. Currently, functionalities include keyboard input, text-based screen output, and disk access, with the developer aiming to eventually expand to a graphical user interface and more advanced features. The project, RetrOS-32, is available on GitHub and showcases a passion for low-level programming and operating system development.
Hacker News users generally expressed enthusiasm for the RetrOS-32 project, praising the author's dedication and the impressive feat of creating a hobby OS. Several commenters reminisced about their own experiences with older hardware and OS development. Some discussed the technical aspects of the project, inquiring about the choice of programming language (C) and the possibility of adding features like protected mode or multitasking. A few users expressed interest in contributing to the project. There was also discussion about the challenges and rewards of working with older hardware, with some users sharing their own experiences and advice.
TacOS is a hobby operating system kernel written from scratch in C and Assembly, designed with the specific goal of running DOOM. It features a custom bootloader, memory management, keyboard driver, and a VGA driver supporting a 320x200 resolution. The kernel interfaces with a custom DOOM port, allowing the game to run directly on the bare metal without relying on any underlying operating system like DOS. This project demonstrates a minimal but functional OS capable of running a complex application, showcasing the core components required for basic system functionality.
HN commenters generally express interest in the TacOS project, praising the author's initiative and the educational value of writing a kernel from scratch. Some commend the clean code and documentation, while others offer suggestions for improvement, such as exploring different memory management strategies or implementing a proper filesystem. A few users express skepticism about the "from scratch" claim, pointing out the use of existing libraries like GRUB and the inherent reliance on hardware specifications. Overall, the comments are positive and encouraging, acknowledging the difficulty of the project and the author's accomplishment. Some users engage in deeper technical discussion about specific implementation details and offer alternative approaches.
Verus is a Rust verification framework designed for low-level systems programming. It extends Rust with features like specifications (preconditions, postconditions, and invariants) and data-race freedom proofs, allowing developers to formally verify the correctness and safety of their code. Verus integrates with existing Rust tools and aims to be practical for real-world systems development, leveraging SMT solvers to automate the verification process. It specifically targets areas like cryptography, operating systems kernels, and concurrent data structures, where rigorous correctness is paramount.
Hacker News users discussed Verus's potential and limitations. Some expressed excitement about its ability to verify low-level code, seeing it as a valuable tool for critical systems. Others questioned its practicality, citing the complexity of verification and the potential for performance overhead. The discussion also touched on the trade-offs between verification and traditional testing, with some arguing that testing remains essential even with formal verification. Several comments highlighted the challenge of balancing the strictness of verification with the flexibility needed for practical systems programming. Finally, some users were curious about Verus's performance characteristics and its suitability for real-world projects.
This blog post explores different strategies for memory allocation within WebAssembly modules, particularly focusing on the trade-offs between using the built-in malloc
(provided by wasm-libc
) and implementing a custom allocator. It highlights the performance overhead of wasm-libc
's malloc
due to its generality and thread safety features. The author presents a leaner, custom bump allocator as a more performant alternative for single-threaded scenarios, showcasing its implementation and integration with a linear memory. Finally, it discusses the option of delegating allocation to JavaScript and the potential complexities involved in managing memory across the WebAssembly/JavaScript boundary.
Hacker News users discussed the implications of WebAssembly's lack of built-in allocator, focusing on the challenges and opportunities it presents. Several commenters highlighted the performance benefits of using a custom allocator tailored to the specific application, rather than relying on a general-purpose one. The discussion touched on various allocation strategies, including linear allocation, arena allocation, and using allocators from the host environment. Some users expressed concern about the added complexity for developers, while others saw it as a positive feature allowing for greater control and optimization. The possibility of standardizing certain allocator interfaces within WebAssembly was also brought up, though acknowledged as a complex undertaking. Some commenters shared their experiences with custom allocators in WebAssembly, mentioning reduced binary sizes and improved performance as key advantages.
The 6502 processor, known for its limitations, inspired clever programming tricks to optimize speed and memory. These "dirty tricks" leverage quirks like the processor's behavior during undocumented opcodes, zero-page addressing, and interactions between instructions and flags. Techniques include self-modifying code to dynamically alter instructions, using the carry flag for efficient branching, and exploiting specific instruction timings for precise delays. By understanding the 6502's nuances, programmers could achieve remarkable results despite the hardware constraints.
Hacker News users generally expressed appreciation for the article on 6502 programming tricks, finding it informative and nostalgic. Several commenters shared additional tricks or variations, including using the undocumented SAX
instruction and manipulating the stack for efficient data storage. Some discussed the cleverness borne out of the 6502's limitations, while others reminisced about using these techniques in their youth. A few pointed out the techniques' applicability to other architectures or modern resource-constrained environments. There was some debate about the definition of "dirty" vs. "clever" tricks, but the overall sentiment was positive towards the article's content and the ingenuity it showcased. The discussion also touched on the differences between assembly programming then and now, and the challenges of optimizing for limited resources.
The blog post "Hacking the Postgres Wire Protocol" details a low-level exploration of PostgreSQL's client-server communication. The author reverse-engineered the protocol by establishing a simple connection and analyzing the network traffic, deciphering message formats for startup, authentication, and simple queries. This involved interpreting various data types and structures within the messages, ultimately allowing the author to construct and send their own custom protocol messages to execute SQL queries directly, bypassing existing client libraries. This hands-on approach provided valuable insights into the inner workings of PostgreSQL and demonstrated the feasibility of interacting with the database at a fundamental level.
Several Hacker News commenters praised the blog post for its clear explanation of the Postgres wire protocol, with some highlighting the helpful use of Wireshark screenshots. One commenter pointed out a potential simplification in the code by directly using the pq
library's Parse
function for extended query messages. Another commenter expressed interest in a similar exploration of the MySQL protocol, while another mentioned using a similar approach for testing database drivers. Some discussion revolved around the practical applications of understanding the wire protocol, with commenters suggesting uses like debugging network issues, building custom proxies, and developing specialized database clients. One user noted the importance of such low-level knowledge for tasks like optimizing database performance.
"Hacktical C" is a free, online guide to the C programming language aimed at aspiring security researchers and exploit developers. It covers fundamental C concepts like data types, control flow, and memory management, but with a specific focus on how these concepts are relevant to low-level programming and exploitation techniques. The guide emphasizes practical application, featuring numerous code examples and exercises demonstrating buffer overflows, format string vulnerabilities, and other common security flaws. It also delves into topics like interacting with the operating system, working with assembly language, and reverse engineering, all within the context of utilizing C for offensive security purposes.
Hacker News users largely praised "Hacktical C" for its clear writing style and focus on practical application, particularly for those interested in systems programming and security. Several commenters appreciated the author's approach of explaining concepts through real-world examples, like crafting shellcode and exploiting vulnerabilities. Some highlighted the book's coverage of lesser-known C features and quirks, making it valuable even for experienced programmers. A few pointed out potential improvements, such as adding more exercises or expanding on certain topics. Overall, the sentiment was positive, with many recommending the book for anyone looking to deepen their understanding of C and its use in low-level programming.
C3 is a new programming language designed as a modern alternative to C. It aims to be safer and easier to use while maintaining C's performance and low-level control. Key features include optional memory safety through compile-time checks and garbage collection, improved syntax and error messages, and built-in modularity. The project is actively under development and includes a self-hosting compiler written in C3. The goal is to provide a practical language for systems programming and other performance-sensitive domains while mitigating common C pitfalls.
HN users discuss C3's goals and features, expressing both interest and skepticism. Several question the need for another C-like language, especially given the continued development of C and C++. Some appreciate the focus on safety and preventing common C errors, while others find the changes too drastic a departure from C's philosophy. There's debate about the practicality of automatic memory management in systems programming, and some concern over the runtime overhead it might introduce. The project's early stage is noted, and some express reservations about its long-term viability and community adoption. Others are more optimistic, praising the clear documentation and expressing interest in following its progress. The use of Python for the compiler is also a point of discussion.
This book, "Introduction to System Programming in Linux," offers a practical, project-based approach to learning low-level Linux programming. It covers essential concepts like process management, memory allocation, inter-process communication (using pipes, message queues, and shared memory), file I/O, and multithreading. The book emphasizes hands-on learning through coding examples and projects, guiding readers in building their own mini-shell, a multithreaded web server, and a key-value store. It aims to provide a solid foundation for developing system software, embedded systems, and performance-sensitive applications on Linux.
Hacker News users discuss the value of the "Introduction to System Programming in Linux" book, particularly for beginners. Some commenters highlight the importance of Kay Robbins and Dave Robbins' previous work, expressing excitement for this new release. Others debate the book's relevance given the wealth of free online resources, although some counter that a well-structured book can be more valuable than scattered web tutorials. Several commenters express interest in seeing more practical examples and projects within the book, particularly those focusing on modern systems and real-world applications. Finally, there's a brief discussion about alternative learning resources, including the Linux Programming Interface and Beej's Guide.
MilliForth-6502 is a minimalist Forth implementation for the 6502 processor, designed to be incredibly small while remaining a practical programming language. It features a 1 KB dictionary, a 256-byte parameter stack, and implements core Forth words including arithmetic, logic, stack manipulation, and I/O. Despite its size, MilliForth allows for defining new words and includes a simple interactive interpreter. Its compactness makes it suitable for resource-constrained 6502 systems, and the project provides source code and documentation for building and using it.
Hacker News users discussed the practicality and minimalism of MilliForth, a Forth implementation for the 6502 processor. Some questioned its usefulness beyond educational purposes, citing limited memory and awkward programming style compared to assembly language. Others appreciated its cleverness and the challenge of creating such a compact system, viewing it as a testament to Forth's flexibility. Several comments highlighted the historical context of Forth on resource-constrained systems and drew parallels to other small language implementations. The maintainability of generated code and the debugging experience were also mentioned as potential drawbacks. A few commenters expressed interest in exploring MilliForth further and potentially using it for small embedded projects.
Picoruby is a lightweight implementation of the Ruby programming language specifically designed for microcontrollers. Based on mruby/c, a minimal version of mruby, it aims to bring the flexibility and ease-of-use of a high-level language like Ruby to resource-constrained embedded systems. This allows developers to write more complex logic and algorithms on small devices using a familiar syntax, potentially simplifying development and improving code maintainability. The project includes a virtual machine, a garbage collector, and core Ruby classes, enabling a reasonable subset of Ruby functionality on microcontrollers.
HN users discussed the practicality and performance implications of using mruby and picoruby in resource-constrained environments. Some expressed skepticism about the actual performance benefits, questioning whether the overhead of the interpreter outweighs the advantages of using a higher-level language. Others highlighted the potential benefits for rapid prototyping and easier code maintenance. Several commenters pointed out that Lua is a strong competitor in this space, offering similar benefits with potentially better performance. The suitability of garbage collection for embedded systems was also debated, with concerns about unpredictable latency. Finally, some users shared their positive experiences using mruby in similar projects.
The author details the process of creating a ZX Spectrum game from scratch, starting with C code for core game logic. This C code was then manually translated into Z80 assembly, a challenging process requiring careful consideration of memory management and hardware limitations. After the assembly code was complete, they created a loading screen and integrated everything into a working .tap
file, the standard format for Spectrum games. This involved understanding the intricacies of the Spectrum's tape loading system and manipulating audio frequencies to encode the game data for reliable loading on original hardware. The result was a playable game demonstrating a complete pipeline from high-level language to a functional retro game program.
Hacker News users discuss the impressive feat of converting C code to Z80 assembly and then to a working ZX Spectrum tape. Several commenters praise the author's clear explanation of the process and the clever tricks used to optimize for the Z80's limited resources. Some share nostalgic memories of working with the ZX Spectrum and Z80 assembly, while others delve into technical details like memory management and the challenges of cross-development. A few highlight the educational value of the project, showing the direct connection between high-level languages and the underlying hardware. One compelling comment thread discusses the efficiency of the generated Z80 code compared to hand-written assembly, with differing opinions on whether the compiler's output could be further improved. Another interesting exchange revolves around the practical applications of such a technique today, ranging from embedded systems to retro game development.
"The Night Watch" argues that modern operating systems are overly complex and difficult to secure due to the accretion of features and legacy code. It proposes a "clean-slate" approach, advocating for simpler, more formally verifiable microkernels. This would entail moving much of the OS functionality into user space, enabling better isolation and fault containment. While acknowledging the challenges of such a radical shift, including performance concerns and the enormous effort required to rebuild the software ecosystem, the paper contends that the long-term benefits of improved security and reliability outweigh the costs. It emphasizes that the current trajectory of increasingly complex OSes is unsustainable and that a fundamental rethinking of system design is crucial to address the growing security threats facing modern computing.
HN users discuss James Mickens' humorous USENIX keynote, "The Night Watch," focusing on its entertaining delivery and insightful points about the complexities and frustrations of systems work. Several commenters praise Mickens' unique presentation style and the relatable nature of his anecdotes about debugging, legacy code, and the challenges of managing distributed systems. Some highlight specific memorable quotes and jokes, appreciating the blend of humor and technical depth. Others reflect on the timeless nature of the talk, noting how the issues discussed remain relevant years later. A few commenters express interest in seeing a video recording of the presentation.
Driven by a desire for simplicity and performance in a personal project involving embedded systems and game development, the author rediscovered their passion for C. After years of working with higher-level languages, they found the direct control and predictable behavior of C refreshing and efficient. This shift allowed them to focus on core programming principles and optimize their code for resource-constrained environments, ultimately leading to a more satisfying and performant outcome than they felt was achievable with more complex tools. They argue that while modern languages offer conveniences, C's close-to-the-metal nature provides a unique learning experience and performance advantage, particularly for certain applications.
HN commenters largely agree with the author's points about C's advantages, particularly its predictability and control over performance. Several praised the feeling of being "close to the metal" and the satisfaction of understanding exactly how the code interacts with the hardware. Some offered additional benefits of C, such as easier debugging due to its simpler execution model and its usefulness in constrained environments. A few commenters cautioned against romanticizing C, pointing out its drawbacks like manual memory management and the potential for security vulnerabilities. One commenter suggested Zig as a modern alternative that addresses some of C's shortcomings while maintaining its performance benefits. The discussion also touched on the enduring relevance of C, particularly in foundational systems and performance-critical applications.
This blog post presents a revised and more robust method for invoking raw OpenBSD system calls directly from C code, bypassing the standard C library. It improves upon a previous example by handling variable-length argument lists and demonstrating how to package those arguments correctly for system calls. The core improvement involves using assembly code to dynamically construct the system call arguments on the stack and then execute the syscall
instruction. This allows for a more general and flexible approach compared to hardcoding argument handling for each specific system call. The provided code example demonstrates this technique with the getpid()
system call.
Several Hacker News commenters discuss the impracticality of the raw syscall demo, questioning its real-world usefulness and emphasizing that libraries like libc exist for a reason. Some appreciated the technical depth and the exploration of low-level system interaction, viewing it as an interesting educational exercise. One commenter suggested the demo could be useful for specialized scenarios like writing a dynamic linker or a microkernel. There was also a brief discussion about the performance implications and the idea that bypassing libc wouldn't necessarily result in significant speed improvements, and might even be slower in some cases. Some users also debated the portability of the code and suggested alternative methods for achieving similar results.
Modern compilers use sophisticated algorithms, primarily based on graph coloring, to determine register allocation. They construct an interference graph where nodes represent variables and edges connect variables that are live simultaneously. The compiler then tries to "color" the graph with a limited number of colors, representing available registers, such that no adjacent nodes share the same color. Variables that can't be assigned a color (register) are spilled to memory. Various optimizations, like live range analysis and coalescing, improve allocation efficiency by reducing the number of live variables and merging related variables. Ultimately, the compiler aims to minimize memory access and maximize register usage for frequently accessed variables, improving program performance.
Hacker News users discussed register allocation, focusing on its complexity and evolution. Several pointed out that modern compilers employ sophisticated algorithms like graph coloring for global register allocation, while others emphasized the importance of live range analysis. One commenter highlighted the impact of calling conventions and how they constrain register usage. The trade-offs between compile time and optimization level were also mentioned, with some noting that higher optimization levels often lead to better register allocation but longer compilation times. The difficulty of handling aliasing and the role of static single assignment (SSA) form in simplifying register allocation were also discussed.
"Tiny Pointers" introduces a technique to reduce pointer size in C/C++ programs, thereby lowering memory usage without significantly impacting performance. The core idea involves restricting pointers to smaller regions of memory, enabling them to be represented with fewer bits. The paper details several methods for achieving this, including static analysis, profile-guided optimization, and dynamic recompilation. Experimental results demonstrate memory savings of up to 40% with negligible performance overhead in various benchmarks and real-world applications. This approach offers a promising solution for memory-constrained environments, particularly embedded systems and mobile devices.
HN users discuss the implications of "tiny pointers," focusing on potential performance improvements and drawbacks. Some doubt the practicality due to increased code complexity and the overhead of managing pointer metadata. Concerns are raised about compatibility with existing codebases and the potential for fragmentation in the memory allocator. Others express interest in exploring this concept further, particularly its application in specific scenarios like embedded systems or custom memory allocators where fine-grained control over memory is crucial. There's also discussion on whether the claimed benefits would outweigh the costs in real-world applications, with some suggesting that traditional optimization techniques might be more effective. A few commenters point out similar existing techniques like tagged pointers and debate the novelty of this approach.
This blog post details creating a basic Windows driver using Rust. It leverages the windows
crate for Windows API bindings and the wdk-sys
crate for lower-level WDK access. The driver implements a minimal "DispatchCreateClose" routine, handling device creation and closure. The post walks through setting up the Rust development environment, including Cargo configuration and build process adjustments for driver compilation. It highlights using the wdk-build
crate for simplifying the build process and generating the necessary INF file for driver installation. Finally, it demonstrates loading and unloading the driver using the DevCon utility, providing a practical example of the entire workflow from development to deployment.
Hacker News users discussed the challenges and advantages of writing Windows drivers in Rust. Several commenters pointed out the difficulty of working with the Windows Driver Kit (WDK) and its C/C++ focus, contrasting it with Rust's memory safety and modern tooling. Some highlighted the potential for improved driver stability and security with Rust. The conversation also touched on existing Rust wrappers for the WDK, the maturity of Rust driver development, and the complexities of interrupt handling. One user questioned the overall benefit, arguing that the difficulty of writing drivers stems from inherent hardware complexities more than language choice. Another pointed out the limited use of high-level languages in kernel-mode drivers due to real-time constraints.
The blog post argues that Carbon, while presented as a new language, is functionally more of a dialect or a sustained, large-scale fork of C++. It shares so much of C++'s syntax, semantics, and tooling that it blurs the line between a distinct language and a significantly evolved version of existing C++. This close relationship makes migration easier, but also raises questions about whether the benefits of a 'new' language outweigh the costs of maintaining another C++-like ecosystem, especially given ongoing modernization efforts within C++ itself. The author suggests that Carbon is less a revolution and more of a strategic response to the inertia surrounding large C++ codebases, offering a cleaner starting point while retaining substantial compatibility.
Hacker News commenters largely agree with the author's premise that Carbon, despite Google's marketing, isn't yet a fully realized language. Several point out the lack of a stable ABI and the dependence on constantly evolving C++ tooling as major roadblocks. Some highlight the ambiguity around its governance model, questioning whether it will truly be community-driven or remain under Google's control. The most compelling comments delve into the practical implications of this, expressing skepticism about adopting a language with such a precarious foundation and predicting a long road ahead before Carbon reaches production readiness for substantial projects. Others counter that this is expected for a young language and that Carbon's potential merits are worth the wait, citing its modern features and interoperability with C++. A few commenters express disappointment or frustration with the slow pace of Carbon's development, contrasting it with other language projects.
The 6502 assembly language makes a great first foray into low-level programming due to its small, easily grasped instruction set and straightforward addressing modes. Its simplicity encourages understanding of fundamental concepts like registers, memory management, and instruction execution without overwhelming beginners. Coupled with readily available emulators and a rich history in iconic systems, the 6502 offers a practical and engaging learning experience that builds a solid foundation for exploring more complex architectures later on. Its limited register set forces a focus on memory operations, providing valuable insight into how CPUs interact with memory.
Hacker News users generally agreed that the 6502 is a good starting point for learning assembly language due to its small and simple instruction set, limited addressing modes, and readily available emulators and documentation. Several commenters shared personal anecdotes of their early programming experiences with the 6502, reinforcing its suitability for beginners. Some suggested alternative starting points like the Z80 or MIPS, citing their more "regular" instruction sets, but acknowledged the 6502's historical significance and accessibility. A few users also discussed the benefits of learning assembly language in general, emphasizing the foundational understanding it provides of computer architecture and low-level programming concepts. A minor thread debated the educational value of assembly in the modern era, but the prevailing sentiment remained positive towards the 6502 as an introductory assembly language.
The blog post details the reverse engineering process of Apple's proprietary Typed Stream format used in various macOS features like Spotlight search indexing and QuickLook previews. The author, motivated by the lack of public documentation, utilizes a combination of tools and techniques including analyzing generated Typed Stream files, using class-dump on relevant system frameworks, and examining open-source components like CoreFoundation, to decipher the format. They ultimately discover that Typed Streams are essentially serialized property lists with a specific header and optional compression, allowing for efficient storage and retrieval of typed data. This reverse engineering effort provides valuable insight into the inner workings of macOS and potentially enables interoperability with other systems.
HN users generally praised the author's reverse-engineering effort, calling it "impressive" and "well-documented." Some discussed the implications of Apple using a custom format, speculating about potential performance benefits or tighter integration with their hardware. One commenter noted the similarity to Google's Protocol Buffers, suggesting Apple might have chosen this route to avoid dependencies. Others pointed out the difficulty in reverse-engineering these formats, highlighting the value of such work for interoperability. A few users discussed potential use cases for the information, including debugging and data recovery. Some also questioned the long-term viability of relying on undocumented formats.
The author details their process of creating a WebAssembly (Wasm) virtual machine (VM) written entirely in C. Driven by a desire for a lightweight, embeddable Wasm runtime for resource-constrained environments, they built the VM from scratch, implementing core features like the stack-based execution model, linear memory, and basic WebAssembly System Interface (WASI) support. The project focused on simplicity and understandability over performance, serving primarily as a learning exercise and a platform for experimentation with Wasm. The post walks through key aspects of the VM's design and implementation, including parsing the Wasm binary format, handling function calls, and managing memory. It also highlights the challenges faced and lessons learned during the development process.
Hacker News users generally praised the author's clear writing style and the educational value of the post. Several commenters discussed the project's performance, noting that it's not optimized for speed and suggesting potential improvements like just-in-time compilation. Some shared their own experiences with WASM interpreters and related projects, including comparisons to other implementations and alternative approaches like using a stack machine. Others appreciated the detailed explanation of the parsing and execution process, finding it helpful for understanding WASM internals. A few users pointed out minor corrections or areas for potential enhancement in the code, demonstrating active engagement with the technical details.
The blog post argues for a standardized, cross-platform OS API specifically designed for timers. Existing timer mechanisms, like POSIX's timerfd
and Windows' CreateWaitableTimer
, while useful, differ significantly across operating systems, complicating cross-platform development. The author proposes a new API with a consistent interface that abstracts away these platform-specific details. This ideal API would allow developers to create, arm, and disarm timers, specifying absolute or relative deadlines with optional periodic behavior, all while handling potential issues like early wake-ups gracefully. This would simplify codebases and improve portability for applications relying on precise timing across different operating systems.
The Hacker News comments discuss the complexities of cross-platform timer APIs, largely agreeing with the article's premise. Several commenters highlight the difficulties introduced by different operating systems' power management features, impacting timer accuracy and reliability. Specific challenges like signal coalescing and the lack of a unified interface for monotonic timers are mentioned. Some propose workarounds like busy-waiting for short durations or using platform-specific code for optimal performance. The need for a standardized API is reiterated, with suggestions for what such an API should offer, including considerations for power efficiency and different timer resolutions. One commenter points to the challenges of abstracting away hardware differences completely, suggesting the ideal solution may involve a combination of OS-level improvements and application-specific strategies.
Summary of Comments ( 143 )
https://news.ycombinator.com/item?id=44038209
Hacker News users discussed the practicality and appeal of the author's approach to game development. Several commenters questioned the long-term viability of building and maintaining custom engines, citing the significant time investment and potential for reinventing the wheel. Others expressed interest in the minimalist philosophy, particularly for smaller, experimental projects where creative control is paramount. Some pointed out the existing tools like raylib and Love2D that offer a middle ground between full-blown engines and building from scratch. The discussion also touched upon the importance of understanding underlying principles, regardless of the chosen tools. Finally, some users debated the definition of a "game engine" and whether the author's approach qualifies as engine-less.
The Hacker News post "Making Video Games (Without an Engine) in 2025" generated a moderate discussion with several insightful comments. Many of the commenters engaged with the author's premise of building a game from scratch, using only libraries like SDL, and the implications of this approach for the future of game development.
Several commenters focused on the practicalities and trade-offs of engine-less game development. One commenter questioned the author's choice of SDL, suggesting that more modern alternatives like SFML might offer better performance and features for a similar level of control. Another pointed out the significant time investment required to build core engine functionalities, like physics and rendering, from the ground up. This commenter argued that while the learning experience is valuable, using an existing engine is drastically more efficient for most projects, especially for solo developers or small teams. Related to this, another user highlighted the potential benefits of smaller, more modular engines or libraries as a middle ground between full-fledged engines and building everything from scratch. They suggested this approach would offer more control than larger engines while still avoiding the considerable effort of completely reinventing the wheel.
The discussion also touched upon the evolving role of game engines and their potential future. One commenter predicted that engines might evolve into more specialized tools, catering to specific game genres or platforms. They envisioned a future where "micro-engines" or collections of libraries become more prevalent, empowering developers to customize their toolsets based on their individual needs. Another user suggested that the increasing complexity of modern game development might necessitate a shift towards more specialized roles within teams, with some developers focusing solely on engine-level development. They posited that this specialization might mirror the evolution of web development, where specialized frontend and backend developers have become commonplace.
A few commenters also shared their personal experiences and opinions on the matter. One commenter recounted their own experience building a game from scratch and echoed the sentiment that while challenging and time-consuming, it provided invaluable insights into the inner workings of game engines. Another commenter shared their preference for using existing engines but acknowledged the educational value and potential for innovation in taking a more DIY approach.
Overall, the comments reflect a nuanced perspective on the future of game development, acknowledging the benefits of both engine-based and engine-less approaches. The discussion highlights the importance of carefully evaluating the trade-offs between control, efficiency, and learning when choosing the right tools for a project. It also suggests a potential future where the game development landscape becomes more diverse, with a wider range of engines and tools catering to different needs and development styles.