AutoThink is a new tool designed to improve the performance of locally-run large language models (LLMs) by incorporating adaptive reasoning. It achieves this by breaking down complex tasks into smaller, manageable sub-problems and dynamically adjusting the prompt based on the LLM's responses to each sub-problem. This iterative approach allows the LLM to build upon its own reasoning, leading to more accurate and comprehensive results, especially for tasks that require multi-step logic or planning. AutoThink aims to make local LLMs more competitive with their cloud-based counterparts by enhancing their ability to handle complex tasks without relying on external resources.
Anthropic has released Claude 4, their latest large language model. This new model boasts significant improvements in performance across coding, math, reasoning, and safety. Claude 4 can handle much larger prompts—up to around 100K tokens, enabling it to process hundreds of pages of technical documentation or even a book. Its enhanced abilities are demonstrably better at standardized tests like the GRE, Code LeetCode, and GSM8k math problems, outperforming previous versions. Additionally, Claude 4 is more steerable, less prone to hallucination, and can produce longer and more structured outputs. It's now accessible through a chat interface and API, with two options: Claude-4-Instant for faster, lower-cost tasks, and Claude-4 for more complex reasoning and creative content generation.
Hacker News users discussing Claude 4 generally express excitement about its improved capabilities, particularly its long context window and coding abilities. Several commenters share anecdotes of successful usage, including handling large legal documents and generating impressive creative text formats. Some raise concerns about potential misuse, especially regarding academic dishonesty, and the possibility of hallucinations. The cost and limited availability are also mentioned as drawbacks. A few commenters compare Claude favorably to GPT-4, highlighting its stronger reasoning skills and "nicer" personality. There's also a discussion around the context window implementation and its potential limitations, as well as speculation about Anthropic's underlying model architecture.
The Continuous Thought Machine (CTM) is a new architecture for autonomous agents that combines a large language model (LLM) with a persistent, controllable world model. Instead of relying solely on the LLM's internal representations, the CTM uses the world model as its "working memory," allowing it to store and retrieve information over extended periods. This enables the CTM to perform complex, multi-step reasoning and planning, overcoming the limitations of traditional LLM-based agents that struggle with long-term coherence and consistency. The world model is directly manipulated by the LLM, allowing for flexible and dynamic updates, while also being structured to facilitate reasoning and retrieval. This integration creates an agent capable of more sustained, consistent, and sophisticated thought processes, making it more suitable for complex real-world tasks.
Hacker News users discuss Sakana AI's "Continuous Thought Machines" and their potential implications. Some express skepticism about the feasibility of building truly continuous systems, questioning whether the proposed approach is genuinely novel or simply a rebranding of existing transformer models. Others are intrigued by the biological inspiration and the possibility of achieving more complex reasoning and contextual understanding than current AI allows. A few commenters note the lack of concrete details and express a desire to see more technical specifications and experimental results before forming a strong opinion. There's also discussion about the name itself, with some finding it evocative while others consider it hype-driven. The overall sentiment seems to be a mixture of cautious optimism and a wait-and-see attitude.
Chain of Recursive Thoughts (CoRT) proposes a method for improving large language models (LLMs) by prompting them to engage in self-debate. The LLM generates multiple distinct "thought" chains addressing a given problem, then synthesizes these into a final answer. Each thought chain incorporates criticisms of preceding chains, forcing the model to refine its reasoning and address potential flaws. This iterative process of generating, critiquing, and synthesizing promotes deeper reasoning and potentially leads to more accurate and nuanced outputs compared to standard single-pass generation.
HN users discuss potential issues with the "Chain of Recursive Thoughts" approach. Some express skepticism about its effectiveness beyond simple tasks, citing the potential for hallucinations or getting stuck in unproductive loops. Others question the novelty, arguing that it resembles existing techniques like tree search or internal dialogue generation. A compelling comment highlights that the core idea – using a language model to critique and refine its own output – isn't new, but this implementation provides a structured framework for it. Several users suggest the method might be most effective for tasks requiring iterative refinement like code generation or mathematical proofs, while less suited for creative tasks. The lack of comparative benchmarks is also noted, making it difficult to assess the actual improvements offered by this method.
Qwen-3 is Alibaba Cloud's next-generation large language model, boasting enhanced reasoning capabilities and faster inference speeds compared to its predecessors. It supports a wider context window, enabling it to process significantly more information within a single request, and demonstrates improved performance across a range of tasks including long-form text generation, question answering, and code generation. Available in various sizes, Qwen-3 prioritizes safety and efficiency, featuring both built-in safety alignment and optimizations for cost-effective deployment. Alibaba Cloud is releasing pre-trained models and offering API access, aiming to empower developers and researchers with powerful language AI tools.
Hacker News users discussed Qwen3's claimed improvements, focusing on its reasoning abilities and faster inference speed. Some expressed skepticism about the benchmarks used, emphasizing the need for independent verification and questioning the practicality of the claimed speed improvements given potential hardware requirements. Others discussed the open-source nature of the model and its potential impact on the AI landscape, comparing it favorably to other large language models. The conversation also touched upon the licensing terms and the implications for commercial use, with some expressing concern about the restrictions. A few commenters pointed out the lack of detail regarding training data and the potential biases embedded within the model.
Kenneth Iverson's "Notation as a Tool of Thought" argues that concise, executable mathematical notation significantly amplifies cognitive abilities. He demonstrates how APL, a programming language designed around a powerful set of symbolic operators, facilitates clearer thinking and problem-solving. By allowing complex operations to be expressed succinctly, APL reduces cognitive load and fosters exploration of mathematical concepts. The paper presents examples of APL's effectiveness in diverse domains, showcasing its capacity to represent algorithms elegantly and efficiently. Iverson posits that appropriate notation empowers the user to manipulate ideas more readily, promoting deeper understanding and leading to novel insights that might otherwise remain inaccessible.
Hacker News users discuss Iverson's 1979 Turing Award lecture, focusing on the power and elegance of APL's notation. Several commenters highlight its influence on array programming in later languages like Python (NumPy) and J. Some debate APL's steep learning curve and cryptic symbols, contrasting it with more verbose languages. The conciseness of APL is both praised for enabling complex operations in a single line and criticized for its difficulty to read and debug. The discussion also touches upon the notation's ability to foster a different way of thinking about problems, reflecting Iverson's original point about notation as a tool of thought. A few commenters share personal anecdotes about learning and using APL, emphasizing its educational value and expressing regret at its decline in popularity.
Logiquiz offers daily self-referential logic puzzles where the clues describe the solution grid itself. Players deduce the contents of a grid, typically numbers or symbols, based on statements about the grid's rows, columns, and other properties. Each puzzle has a unique solution, achievable through logical deduction without guessing. The website provides a new puzzle every day, along with an archive of past puzzles.
HN users generally found Logiquiz an interesting and enjoyable puzzle concept. Several appreciated the self-referential nature and the clean presentation. Some expressed concern about the limited number of puzzles currently available, while others offered suggestions like adding difficulty levels, hints, and the ability to share solutions. One commenter suggested adding the capability to generate puzzles, possibly leading to user-created content. The potential for puzzle variations, like Sudoku-style constraints, was also discussed. A few users drew comparisons to other logic puzzles, such as "Knights and Knaves" and existing grid-based logic puzzles.
The blog post investigates whether Reinforcement Learning from Human Feedback (RLHF) actually improves the reasoning capabilities of Large Language Models (LLMs) or simply makes them better at following instructions and appearing more helpful. Through experiments on tasks requiring logical deduction and common sense, the authors find that RLHF primarily improves surface-level attributes, making the models more persuasive without genuinely enhancing their underlying reasoning abilities. While RLHF models score higher due to better instruction following and avoidance of obvious errors, they don't demonstrate improved logical reasoning compared to base models when superficial cues are removed. The conclusion suggests RLHF incentivizes LLMs to mimic human-preferred outputs rather than developing true reasoning skills, raising concerns about the limitations of current RLHF methods for achieving deeper improvements in LLM capabilities.
Several Hacker News commenters discuss the limitations of Reinforcement Learning from Human Feedback (RLHF) in improving reasoning abilities of Large Language Models (LLMs). Some argue that RLHF primarily optimizes for superficial aspects of human preferences, like politeness and coherence, rather than genuine reasoning skills. A compelling point raised is that RLHF might incentivize LLMs to exploit biases in human evaluators, learning to produce outputs that "sound good" rather than outputs that are logically sound. Another commenter highlights the importance of the base model's capabilities, suggesting that RLHF can only refine existing reasoning abilities, not create them. The discussion also touches upon the difficulty of designing reward functions that accurately capture complex reasoning processes and the potential for overfitting to the training data. Several users express skepticism about the long-term effectiveness of RLHF as a primary method for improving LLM reasoning.
QVQ-Max is a new large language model designed to enhance factual accuracy and reasoning abilities. It achieves this by employing a "Think with Evidence" approach, integrating retrieved external knowledge directly into its generation process. Unlike traditional models that simply access knowledge during pre-training or retrieval augmentation at inference, QVQ-Max interleaves retrieval and generation steps. This iterative process allows the model to gather supporting evidence, synthesize information from multiple sources, and form more grounded and reliable responses. This method demonstrably improves performance on complex reasoning tasks requiring factual accuracy, making QVQ-Max a promising advancement in building more truthful and trustworthy LLMs.
Several Hacker News commenters express skepticism about QVQ-Max's claimed reasoning abilities, pointing out that large language models (LLMs) are prone to hallucination and that the provided examples might be cherry-picked. Some suggest more rigorous testing is needed, including comparisons to other LLMs and a more in-depth analysis of its failure cases. Others discuss the potential for such models to be useful even with imperfections, particularly in tasks like brainstorming or generating leads for further investigation. The reliance on retrieval and the potential limitations of the knowledge base are also brought up, with some questioning the long-term scalability and practicality of this approach compared to models trained on larger datasets. Finally, there's a discussion of the limitations of evaluating LLMs based on simple question-answering tasks and the need for more nuanced metrics that capture the process of reasoning and evidence gathering.
Search-R1 introduces a novel method for training Large Language Models (LLMs) to effectively use search engines for complex reasoning tasks. By combining reinforcement learning with retrieval augmented generation, Search-R1 learns to formulate optimal search queries, evaluate the returned search results, and integrate the relevant information into its responses. This approach allows the model to access up-to-date, factual information and demonstrate improved performance on tasks requiring reasoning and knowledge beyond its initial training data. Specifically, Search-R1 iteratively refines its search queries based on feedback from a reward model that assesses the quality and relevance of retrieved information, ultimately producing more accurate and comprehensive answers.
Hacker News users discussed the implications of training LLMs to use search engines, expressing both excitement and concern. Several commenters saw this as a crucial step towards more factual and up-to-date LLMs, praising the approach of using reinforcement learning from human feedback. Some highlighted the potential for reducing hallucinations and improving the reliability of generated information. However, others worried about potential downsides, such as increased centralization of information access through specific search engines and the possibility of LLMs manipulating search results or becoming overly reliant on them, hindering the development of true reasoning capabilities. The ethical implications of LLMs potentially gaming search engine algorithms were also raised. A few commenters questioned the novelty of the approach, pointing to existing work in this area.
Anthropic's research explores making large language model (LLM) reasoning more transparent and understandable. They introduce a technique called "thought tracing," which involves prompting the LLM to verbalize its step-by-step reasoning process while solving a problem. By examining these intermediate steps, researchers gain insights into how the model arrives at its final answer, revealing potential errors in logic or biases. This method allows for a more detailed analysis of LLM behavior and facilitates the development of techniques to improve their reliability and explainability, ultimately moving towards more robust and trustworthy AI systems.
HN commenters generally praised Anthropic's work on interpretability, finding the "thought tracing" approach interesting and valuable for understanding how LLMs function. Several highlighted the potential for improving model behavior, debugging, and building more robust and reliable systems. Some questioned the scalability of the method and expressed skepticism about whether it truly reveals "thoughts" or simply reflects learned patterns. A few commenters discussed the implications for aligning LLMs with human values and preventing harmful outputs, while others focused on the technical details of the process, such as the use of prompts and the interpretation of intermediate tokens. The potential for using this technique to detect deceptive or manipulative behavior in LLMs was also mentioned. One commenter drew parallels to previous work on visualizing neural networks.
Microsoft researchers investigated the impact of generative AI tools on students' critical thinking skills across various educational levels. Their study, using a mixed-methods approach involving surveys, interviews, and think-aloud protocols, revealed that while these tools can hinder certain aspects of critical thinking like source evaluation and independent idea generation, they can also enhance other aspects, such as exploring alternative perspectives and structuring arguments. Overall, the impact is nuanced and context-dependent, with both potential benefits and drawbacks. Educators must adapt their teaching strategies to leverage the positive impacts while mitigating the potential negative effects of generative AI on students' development of critical thinking skills.
HN commenters generally express skepticism about the study's methodology and conclusions. Several point out the small and potentially unrepresentative sample size (159 students) and the subjective nature of evaluating critical thinking skills. Some question the validity of using AI-generated text as a proxy for real-world information consumption, arguing that the study doesn't accurately reflect how people interact with AI tools. Others discuss the potential for confirmation bias, with students potentially more critical of AI-generated text simply because they know its source. The most compelling comments highlight the need for more rigorous research with larger, diverse samples and more realistic scenarios to truly understand AI's impact on critical thinking. A few suggest that AI could potentially improve critical thinking by providing access to diverse perspectives and facilitating fact-checking, a point largely overlooked by the study.
A new study challenges the assumption that preschoolers struggle with complex reasoning. Researchers found that four- and five-year-olds can successfully employ disjunctive syllogism – a type of logical argument involving eliminating possibilities – to solve problems when presented with clear, engaging scenarios. Contrary to previous research, these children were able to deduce the correct answer even when the information was presented verbally, without visual aids, suggesting they possess more advanced reasoning skills than previously recognized. This indicates that children's reasoning abilities may be significantly influenced by how information is presented and that simpler, engaging presentations could unlock their potential for logical thought.
Hacker News users discuss the methodology and implications of the study on preschoolers' reasoning abilities. Several commenters express skepticism about the researchers' interpretation of the children's behavior, suggesting alternative explanations like social cues or learned responses rather than genuine deductive reasoning. Some question the generalizability of the findings given the small sample size and specific experimental setup. Others point out the inherent difficulty in assessing complex cognitive processes in young children, emphasizing the need for further research. A few commenters draw connections to related work in developmental psychology and AI, while others reflect on personal experiences with children's surprisingly sophisticated reasoning.
The blog post explores the limitations of formal systems, particularly in discerning truth. It uses the analogy of two goblins, one always truthful and one always lying, to demonstrate how relying solely on a system's rules, without external context or verification, can lead to accepting falsehoods as truths. Even with additional rules added to account for the goblins' lying, clever manipulation can still exploit the system. The post concludes that formal systems, while valuable for structuring thought, are ultimately insufficient for determining truth without external validation or a connection to reality. This highlights the need for critical thinking and skepticism even when dealing with seemingly rigorous systems.
The Hacker News comments generally praise the clarity and engaging presentation of the article's topic (formal systems and the halting problem, illustrated by a lying goblin puzzle). Several commenters discuss the philosophical implications of the piece, particularly regarding the nature of truth and provability within defined systems. Some draw parallels to Gödel's incompleteness theorems, while others offer alternate goblin scenarios or slight modifications to the puzzle's rules. A few commenters suggest related resources, such as Raymond Smullyan's work, which explores similar logical puzzles. There's also a short thread discussing the potential applicability of these concepts to legal systems and contract interpretation.
This paper explores cognitive behaviors that contribute to effective self-improvement in reasoning. It argues that simply possessing knowledge and logical rules isn't enough; individuals must actively engage in metacognitive processes to refine their reasoning. These processes include actively seeking out and evaluating evidence, considering alternative perspectives and explanations, identifying and correcting biases, and reflecting on one's own reasoning process. The authors propose a framework for these "self-improving reasoner" behaviors, emphasizing the importance of "epistemic vigilance," which involves carefully scrutinizing information and its sources, and "adaptive reasoning," which entails adjusting reasoning strategies based on performance and feedback. Ultimately, cultivating these cognitive behaviors is essential for overcoming limitations in reasoning and achieving more accurate and reliable conclusions.
HN users discuss potential issues and implications of the paper "Cognitive Behaviors That Enable Self-Improving Reasoners." Some express skepticism about the feasibility of recursive self-improvement in AI, citing the potential for unforeseen consequences and the difficulty of defining "improvement" rigorously. Others question the paper's focus on cognitive architectures, arguing that current deep learning approaches might achieve similar outcomes through different mechanisms. The limited scope of the proposed "cognitive behaviors" also draws criticism, with commenters suggesting they are too simplistic to capture the complexities of general intelligence. Several users point out the lack of concrete implementation details and the difficulty of testing the proposed ideas empirically. Finally, there's a discussion about the ethical implications of self-improving AI, highlighting concerns about control and alignment with human values.
This blog post details an experiment demonstrating strong performance on the ARC challenge, a complex reasoning benchmark, without using any pre-training. The author achieves this by combining three key elements: a specialized program synthesis architecture inspired by the original ARC paper, a powerful solver optimized for the task, and a novel search algorithm dubbed "beam search with mutations." This approach challenges the prevailing assumption that massive pre-training is essential for high-level reasoning tasks, suggesting alternative pathways to artificial general intelligence (AGI) that prioritize efficient program synthesis and powerful search methods. The results highlight the potential of strategically designed architectures and algorithms to achieve strong performance in complex reasoning, opening up new avenues for AGI research beyond the dominant paradigm of pre-training.
Hacker News users discussed the plausibility and significance of the blog post's claims about achieving AGI without pretraining. Several commenters expressed skepticism, pointing to the lack of rigorous evaluation and the limited scope of the demonstrated tasks, questioning whether they truly represent general intelligence. Some highlighted the importance of pretraining for current AI models and doubted the author's dismissal of its necessity. Others questioned the definition of AGI being used, arguing that the described system didn't meet the criteria for genuine artificial general intelligence. A few commenters engaged with the technical details, discussing the proposed architecture and its potential limitations. Overall, the prevailing sentiment was one of cautious skepticism towards the claims of AGI.
The Kapa.ai blog post explores the effectiveness of modular Retrieval Augmented Generation (RAG) systems, specifically focusing on how reasoning models can improve performance. They break down the RAG pipeline into retrievers, reasoners, and generators, and evaluate different combinations of these modules. Their experiments show that adding a reasoning step, even with a relatively simple reasoner, can significantly enhance the quality of generated responses, particularly in complex question-answering scenarios. This modular approach allows for more targeted improvements and offers flexibility in selecting the best component for each task, ultimately leading to more accurate and contextually appropriate outputs.
The Hacker News comments discuss the complexity and potential benefits of the modular Retrieval Augmented Generation (RAG) approach outlined in the linked blog post. Some commenters express skepticism about the practical advantages of such a complex system, arguing that simpler, end-to-end models might ultimately prove more effective and easier to manage. Others highlight the potential for improved explainability and control offered by modularity, particularly for tasks requiring complex reasoning. The discussion also touches on the challenges of evaluating these systems, with some suggesting the need for more robust metrics beyond standard accuracy measures. A few commenters question the focus on retrieval methods, arguing that larger language models might eventually internalize sufficient knowledge to obviate the need for external retrieval. Overall, the comments reflect a cautious optimism towards modular RAG, acknowledging its potential while also recognizing the significant challenges in its development and evaluation.
The blog post explores the ability of Large Language Models (LLMs) to play the card game Set. It finds that while LLMs can successfully identify individual card attributes and even determine if three cards form a Set when explicitly presented with them, they struggle significantly with the core gameplay aspect of finding Sets within a larger collection of cards. This difficulty stems from the LLMs' inability to effectively perform the parallel visual processing required to scan multiple cards simultaneously and evaluate all possible combinations. Despite attempts to simplify the problem by representing the cards with text-based encodings, LLMs still fall short, demonstrating a gap between their pattern recognition capabilities and the complex visual reasoning demanded by Set. The post concludes that current LLMs are not proficient Set players, highlighting a limitation in their capacity to handle tasks requiring combinatorial visual search.
HN users discuss the limitations of LLMs in playing Set, a pattern-matching card game. Several point out that the core challenge lies in the LLMs' inability to process visual information directly. They must rely on textual descriptions of the cards, a process prone to errors and ambiguity, especially given the game's complex attributes. Some suggest potential workarounds, like specialized training datasets or integrating image recognition capabilities. However, the consensus is that current LLMs are ill-suited for Set and highlight the broader challenges of applying them to tasks requiring visual perception. One commenter notes the irony of AI struggling with a game easily mastered by humans, emphasizing the difference between human and artificial intelligence. Another suggests the game's complexity makes it a good benchmark for testing AI's visual reasoning abilities.
The paper "PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models" introduces "GSM8K," a dataset of 8.5K grade school math word problems designed to evaluate the reasoning and problem-solving abilities of large language models (LLMs). The authors argue that existing benchmarks often rely on specialized knowledge or easily-memorized patterns, while GSM8K focuses on compositional reasoning using basic arithmetic operations. They demonstrate that even the most advanced LLMs struggle with these seemingly simple problems, significantly underperforming human performance. This highlights the gap between current LLMs' ability to manipulate language and their true understanding of underlying concepts, suggesting future research directions focused on improving reasoning and problem-solving capabilities.
HN users generally found the paper's reasoning challenge interesting, but questioned its practicality and real-world relevance. Some pointed out that the challenge focuses on a niche area of knowledge (PhD-level scientific literature), while others doubted its ability to truly test reasoning beyond pattern matching. A few commenters discussed the potential for LLMs to assist with literature review and synthesis, but skepticism remained about whether these models could genuinely understand and contribute to scientific discourse at a high level. The core issue raised was whether solving contrived challenges translates to real-world problem-solving abilities, with several commenters suggesting that the focus should be on more practical applications of LLMs.
LIMO (Less Is More for Reasoning) introduces a new approach to improve the reasoning capabilities of large language models (LLMs). It argues that current chain-of-thought (CoT) prompting methods, while effective, suffer from redundancy and hallucination. LIMO proposes a more concise prompting strategy focused on extracting only the most crucial reasoning steps, thereby reducing the computational burden and improving accuracy. This is achieved by training a "reasoning teacher" model to select the minimal set of effective reasoning steps from a larger CoT generated by another "reasoning student" model. Experiments demonstrate that LIMO achieves better performance than standard CoT prompting on various reasoning tasks, including arithmetic, commonsense, and symbolic reasoning, while also being more efficient in terms of both prompt length and inference time. The method showcases the potential of focusing on essential reasoning steps for enhanced performance in complex reasoning tasks.
Several Hacker News commenters express skepticism about the claims made in the LIMO paper. Some question the novelty, arguing that the core idea of simplifying prompts isn't new and has been explored in prior work. Others point out potential weaknesses in the evaluation methodology, suggesting that the chosen tasks might be too specific or not representative of real-world scenarios. A few commenters find the approach interesting but call for further research and more robust evaluation on diverse datasets to validate the claims of improved reasoning ability. There's also discussion about the practical implications, with some wondering if the gains in performance justify the added complexity of the proposed method.
Sebastian Raschka's article explores how large language models (LLMs) perform reasoning tasks. While LLMs excel at pattern recognition and text generation, their reasoning abilities are still under development. The article delves into techniques like chain-of-thought prompting and how it enhances LLM performance on complex logical problems by encouraging intermediate reasoning steps. It also examines how LLMs can be fine-tuned for specific reasoning tasks using methods like instruction tuning and reinforcement learning with human feedback. Ultimately, the author highlights the ongoing research and development needed to improve the reliability and transparency of LLM reasoning, emphasizing the importance of understanding the limitations of current models.
Hacker News users discuss Sebastian Raschka's article on LLMs and reasoning, focusing on the limitations of current models. Several commenters agree with Raschka's points, highlighting the lack of true reasoning and the reliance on statistical correlations in LLMs. Some suggest that chain-of-thought prompting is essentially a hack, improving performance without addressing the core issue of understanding. The debate also touches on whether LLMs are simply sophisticated parrots mimicking human language, and if symbolic AI or neuro-symbolic approaches might be necessary for achieving genuine reasoning capabilities. One commenter questions the practicality of prompt engineering in real-world applications, arguing that crafting complex prompts negates the supposed ease of use of LLMs. Others point out that LLMs often struggle with basic logic and common sense reasoning, despite impressive performance on certain tasks. There's a general consensus that while LLMs are powerful tools, they are far from achieving true reasoning abilities and further research is needed.
The paper "Efficient Reasoning with Hidden Thinking" introduces Hidden Thinking Networks (HTNs), a novel architecture designed to enhance the efficiency of large language models (LLMs) in complex reasoning tasks. HTNs augment LLMs with a differentiable "scratchpad" that allows them to perform intermediate computations and logical steps, mimicking human thought processes during problem-solving. This hidden thinking process is learned through backpropagation, enabling the model to dynamically adapt its reasoning strategies. By externalizing and making the reasoning steps differentiable, HTNs aim to improve transparency, controllability, and efficiency compared to standard LLMs, which often struggle with multi-step reasoning or rely on computationally expensive prompting techniques like chain-of-thought. The authors demonstrate the effectiveness of HTNs on various reasoning tasks, showcasing their potential for more efficient and interpretable problem-solving with LLMs.
Hacker News users discussed the practicality and implications of the "Hidden Thinking" paper. Several commenters expressed skepticism about the real-world applicability of the proposed method, citing concerns about computational cost and the difficulty of accurately representing complex real-world problems within the framework. Some questioned the novelty of the approach, comparing it to existing techniques like MCTS (Monte Carlo Tree Search) and pointing out potential limitations in scaling and handling uncertainty. Others were more optimistic, seeing potential applications in areas like game playing and automated theorem proving, while acknowledging the need for further research and development. A few commenters also discussed the philosophical implications of machines engaging in "hidden thinking," raising questions about transparency and interpretability.
Large language models (LLMs) excel at many tasks, but recent research reveals they struggle with compositional generalization — the ability to combine learned concepts in novel ways. While LLMs can memorize and regurgitate vast amounts of information, they falter when faced with tasks requiring them to apply learned rules in unfamiliar combinations or contexts. This suggests that LLMs rely heavily on statistical correlations in their training data rather than truly understanding underlying concepts, hindering their ability to reason abstractly and adapt to new situations. This limitation poses a significant challenge to developing truly intelligent AI systems.
HN commenters discuss the limitations of LLMs highlighted in the Quanta article, focusing on their struggles with compositional tasks and reasoning. Several suggest that current LLMs are essentially sophisticated lookup tables, lacking true understanding and relying heavily on statistical correlations. Some point to the need for new architectures, potentially incorporating symbolic reasoning or world models, while others highlight the importance of embodiment and interaction with the environment for genuine learning. The potential of neuro-symbolic AI is also mentioned, alongside skepticism about the scaling hypothesis and whether simply increasing model size will solve these fundamental issues. A few commenters discuss the limitations of the chosen tasks and metrics, suggesting more nuanced evaluation methods are needed.
The original poster wonders if people can be categorized as primarily "story-based" or "fact-based" thinkers. They observe that some individuals seem to prioritize narratives and emotional resonance, readily accepting information that fits a compelling story, even if evidence is lacking. Conversely, others appear to prioritize factual accuracy and logical consistency, potentially dismissing emotionally resonant stories if they lack evidential support. The author questions whether this distinction is valid, if people fall on a spectrum, or if other factors are at play, and asks if this dichotomy influences communication styles and understanding.
The Hacker News comments discuss the idea of "story-based" vs. "fact-based" people, with many expressing skepticism about such a rigid dichotomy. Several commenters suggest the distinction isn't about accepting facts, but rather how people prioritize and interpret them. Some argue everyone uses narratives to understand the world, with the key difference being the quality of evidence people demand to support their narratives. Others point out the influence of cognitive biases, motivated reasoning, and the difficulty of separating facts from interpretation. The role of emotion and empathy in decision-making is also highlighted, with some arguing "story-based" thinking might simply reflect a greater emphasis on emotional connection. A few commenters mention Myers-Briggs personality types as a potential framework for understanding these differences, though this is met with some skepticism. Overall, the consensus seems to be that the proposed dichotomy is overly simplistic and potentially misleading.
The blog post "Emerging reasoning with reinforcement learning" explores how reinforcement learning (RL) agents can develop reasoning capabilities without explicit instruction. It showcases a simple RL environment called Simplerl, where agents learn to manipulate symbolic objects to achieve desired outcomes. Through training, agents demonstrate an emergent ability to plan, execute sub-tasks, and generalize their knowledge to novel situations, suggesting that complex reasoning can arise from basic RL principles. The post highlights how embedding symbolic representations within the environment allows agents to discover and utilize logical relationships between objects, hinting at the potential of RL for developing more sophisticated AI systems capable of abstract thought.
Hacker News users discussed the potential of SimplerL, expressing skepticism about its reasoning capabilities. Some questioned whether the demonstrated "reasoning" was simply sophisticated pattern matching, particularly highlighting the limited context window and the possibility of the model memorizing training data. Others pointed out the lack of true generalization, arguing that the system hadn't learned underlying principles but rather specific solutions within the confined environment. The computational cost and environmental impact of training such large models were also raised as concerns. Several commenters suggested alternative approaches, including symbolic AI and neuro-symbolic methods, as potentially more efficient and robust paths toward genuine reasoning. There was a general sentiment that while SimplerL is an interesting development, it's a long way from demonstrating true reasoning abilities.
DeepSeek-R1 introduces a novel reinforcement learning (RL) framework to enhance reasoning capabilities in Large Language Models (LLMs). It addresses the limitations of standard supervised fine-tuning by employing a reward model trained to evaluate the reasoning quality of generated text. This reward model combines human-provided demonstrations with self-consistency checks, leveraging chain-of-thought prompting to generate multiple reasoning paths and rewarding agreement among them. Experiments on challenging logical reasoning datasets demonstrate that DeepSeek-R1 significantly outperforms supervised learning baselines and other RL approaches, producing more logical and coherent explanations. The proposed framework offers a promising direction for developing LLMs capable of complex reasoning.
Hacker News users discussed the difficulty of evaluating reasoning ability separate from memorization in LLMs, with some questioning the benchmark used in the paper. Several commenters highlighted the novelty of directly incentivizing reasoning steps as a valuable contribution. Concerns were raised about the limited scope of the demonstrated reasoning, focusing on simple arithmetic and symbolic manipulation. One commenter suggested the approach might be computationally expensive and doubted its scalability to more complex reasoning tasks. Others noted the paper's focus on chain-of-thought prompting, viewing it as a promising, though nascent, area of research. The overall sentiment seemed cautiously optimistic, acknowledging the work as a step forward while also acknowledging its limitations.
O1 isn't aiming to be another chatbot. Instead of focusing on general conversation, it's designed as a skill-based agent optimized for executing specific tasks. It leverages a unique architecture that chains together small, specialized modules, allowing for complex actions by combining simpler operations. This modular approach, while potentially limiting in free-flowing conversation, enables O1 to be highly effective within its defined skill set, offering a more practical and potentially scalable alternative to large language models for targeted applications. Its value lies in reliable execution, not witty banter.
Hacker News users discussed the implications of O1's unique approach, which focuses on tools and APIs rather than chat. Several commenters appreciated this focus, arguing it allows for more complex and specialized tasks than traditional chatbots, while also mitigating the risks of hallucinations and biases. Some expressed skepticism about the long-term viability of this approach, wondering if the complexity would limit adoption. Others questioned whether the lack of a chat interface would hinder its usability for less technical users. The conversation also touched on the potential for O1 to be used as a building block for more conversational AI systems in the future. A few commenters drew comparisons to Wolfram Alpha and other tool-based interfaces. The overall sentiment seemed to be cautious optimism, with many interested in seeing how O1 evolves.
OpenAI's model, O3, achieved a new high score on the ARC-AGI Public benchmark, marking a significant advancement in solving complex reasoning problems. This benchmark tests advanced reasoning capabilities, requiring models to solve novel problems not seen during training. O3 substantially improved upon previous top scores, demonstrating an ability to generalize and adapt to unseen challenges. This accomplishment suggests progress towards more general and robust AI systems.
HN commenters discuss the significance of OpenAI's O3 model achieving a high score on the ARC-AGI-PUB benchmark. Some express skepticism, pointing out that the benchmark might not truly represent AGI and questioning whether the progress is as substantial as claimed. Others are more optimistic, viewing it as a significant step towards more general AI. The model's reliance on retrieval methods is highlighted, with some arguing this is a practical approach while others question if it truly demonstrates understanding. Several comments debate the nature of intelligence and whether these benchmarks are adequate measures. Finally, there's discussion about the closed nature of OpenAI's research and the lack of reproducibility, hindering independent verification of the claimed breakthrough.
Anthropic's post details their research into building more effective "agents," AI systems capable of performing a wide range of tasks by interacting with software tools and information sources. They focus on improving agent performance through a combination of techniques: natural language instruction, few-shot learning from demonstrations, and chain-of-thought prompting. Their experiments, using tools like web search and code execution, demonstrate significant performance gains from these methods, particularly chain-of-thought reasoning which enables complex problem-solving. Anthropic emphasizes the potential of these increasingly sophisticated agents to automate workflows and tackle complex real-world problems. They also highlight the ongoing challenges in ensuring agent reliability and safety, and the need for continued research in these areas.
Hacker News users discuss Anthropic's approach to building effective "agents" by chaining language models. Several commenters express skepticism towards the novelty of this approach, pointing out that it's essentially a sophisticated prompt chain, similar to existing techniques like Auto-GPT. Others question the practical utility given the high cost of inference and the inherent limitations of LLMs in reliably performing complex tasks. Some find the concept intriguing, particularly the idea of using a "natural language API," while others note the lack of clarity around what constitutes an "agent" and the absence of a clear problem being solved. The overall sentiment leans towards cautious interest, tempered by concerns about overhyping incremental advancements in LLM applications. Some users highlight the impressive engineering and research efforts behind the work, even if the core concept isn't groundbreaking. The potential implications for automating more complex workflows are acknowledged, but the consensus seems to be that significant hurdles remain before these agents become truly practical and widely applicable.
Summary of Comments ( 56 )
https://news.ycombinator.com/item?id=44112326
The Hacker News comments on AutoThink largely focus on its practical applications and potential limitations. Several commenters question the need for local LLMs, especially given the rapid advancements in cloud-based models, highlighting latency, context window size, and hardware requirements as key concerns. Some express interest in specific use cases, such as processing sensitive data offline or enhancing existing cloud LLMs, while others are skeptical about the claimed performance boost without more concrete benchmarks and comparisons to existing techniques. There's a general desire for more technical details on how AutoThink achieves adaptive reasoning and integrates with various LLM architectures. Several commenters also discuss the licensing of the underlying models and the potential challenges of using closed-source LLMs in commercial settings.
The Hacker News post "Show HN: AutoThink – Boosts local LLM performance with adaptive reasoning" has generated several comments discussing the project and its implications.
Several commenters express interest in the project and its potential applications. One user highlights the value of local LLMs, particularly regarding privacy and cost-effectiveness compared to cloud-based alternatives. They also inquire about the specific hardware requirements for running AutoThink, a common concern for users considering adopting locally-hosted LLM solutions.
Another commenter focuses on the technical aspects, asking about the inner workings of AutoThink, particularly concerning how it enhances local LLMs. They delve into the specifics, querying about the methods employed for adaptive reasoning and whether it involves techniques like chain-of-thought prompting or external tool utilization. This demonstrates a desire to understand the underlying mechanisms that contribute to the claimed performance boost.
Performance is a recurring theme in the comments. One user directly asks about benchmarks and comparisons to existing solutions. This is a crucial point, as quantifiable performance data is essential for evaluating the efficacy of any performance enhancement claim. They specifically ask for comparisons against other local LLM enhancement methods.
One commenter mentions the trade-off between speed and accuracy in LLMs, and questions how AutoThink balances these competing factors. This highlights a common challenge in LLM optimization, where improvements in one area can sometimes come at the expense of another.
Finally, there's a discussion about the broader trend of local LLM development and the potential for tools like AutoThink to empower users with more control over their data and AI models. This reflects a growing interest in decentralized AI solutions and the benefits they offer in terms of privacy, security, and customization.
In summary, the comments on the Hacker News post express a mixture of curiosity, technical inquiry, and pragmatic considerations regarding AutoThink. The commenters delve into practical questions about hardware requirements, performance benchmarks, and the technical underpinnings of the adaptive reasoning mechanism. There's also a broader discussion about the implications of local LLMs and the role of tools like AutoThink in this evolving landscape.