Zyme is a new programming language designed for evolvability. It features a simple, homoiconic syntax and a small core language, making it easy to modify and extend. The language is designed to be used for genetic programming and other evolutionary computation techniques, allowing programs to be mutated and crossed over to generate new, potentially improved versions. Zyme is implemented in Rust and currently offers basic arithmetic, list manipulation, and conditional logic. It aims to provide a platform for exploring new ideas in program evolution and to facilitate the creation of self-modifying and adaptable software.
Obsidian-textgrams is a plugin that allows users to create and embed ASCII diagrams directly within their Obsidian notes. It leverages code blocks and a custom renderer to display the diagrams, offering features like syntax highlighting and the ability to store diagram source code within the note itself. This provides a convenient way to visualize information using simple text-based graphics within the Obsidian environment, eliminating the need for external image files or complex drawing tools.
HN users generally expressed interest in the Obsidian Textgrams plugin, praising its lightweight approach compared to alternatives like Excalidraw or Mermaid. Some suggested improvements, including the ability to embed rendered diagrams as images for compatibility with other Markdown editors, and better text alignment within shapes. One commenter highlighted the usefulness for quickly mocking up system designs or diagrams, while another appreciated its simplicity for note-taking. The discussion also touched upon alternative tools like PlantUML and Graphviz, but the consensus leaned towards appreciating Textgrams' minimalist and fast rendering capabilities within Obsidian. A few users expressed interest in seeing support for more complex shapes and connections.
Summary of Comments ( 23 )
https://news.ycombinator.com/item?id=42147110
HN commenters generally expressed skepticism about Zyme's practical applications. Several questioned the evolutionary approach's efficiency compared to traditional programming paradigms, particularly for complex tasks. Some doubted the ability of evolution to produce readable and maintainable code. Others pointed out the challenges in defining fitness functions and controlling the evolutionary process. A few commenters expressed interest in the project's potential, particularly for tasks where traditional approaches struggle, such as program synthesis or automatic bug fixing. However, the overall sentiment leaned towards cautious curiosity rather than enthusiastic endorsement, with many calling for more concrete examples and comparisons to established techniques.
The Hacker News post "Show HN: Zyme – An Evolvable Programming Language" sparked a discussion with several interesting comments.
Several commenters express interest in the project and its potential. One commenter mentions the connection to "Genetic Programming," acknowledging the long-standing interest in this field and Zyme's contribution to it. They also raise a question about Zyme's practical applications beyond theoretical exploration. Another commenter draws a parallel between Zyme and Wolfram Language, highlighting the shared concept of symbolic programming, but also questioning Zyme's unique contribution. This commenter seems intrigued but also cautious, prompting a need for clearer differentiation and practical examples. A different commenter focuses on the aspect of "evolvability" being central to genetic programming, subtly suggesting that the project description might benefit from emphasizing this aspect more prominently.
One commenter expresses skepticism about the feasibility of using genetic programming to solve complex problems, pointing out the challenges of defining effective fitness functions. They allude to the common issue in genetic programming where generated solutions might achieve high fitness scores in contrived examples but fail to generalize to real-world scenarios.
Furthering the discussion on practical applications, one commenter questions the current state of usability of Zyme for solving real-world problems. They express a desire to see concrete examples or success stories that would showcase the language's practical capabilities. This comment highlights a general interest in understanding how Zyme could be used beyond theoretical or academic contexts.
Another commenter requests clarification about how Zyme handles the issue of program bloat, a common problem in genetic programming where evolved programs can become excessively large and inefficient. This technical question demonstrates a deeper engagement with the technical aspects of Zyme and the challenges inherent in genetic programming.
Overall, the comments reveal a mix of curiosity, skepticism, and a desire for more concrete examples and clarification on Zyme's capabilities and differentiation. The commenters acknowledge the intriguing concept of an evolvable programming language, but also raise important questions about its practicality, usability, and potential to overcome the inherent challenges of genetic programming.