This post explores the Hilbert curve, a continuous fractal space-filling curve. The author visualizes its construction through iterative rotations and connections of smaller, U-shaped segments, demonstrating how this process generates increasingly complex patterns that effectively fill a square grid. The post further examines how points in 2D space can be mapped to a 1D position along the curve and vice-versa, highlighting the curve's applications in image processing and data organization by providing Python code examples for these conversions. The intricate visuals and detailed explanations offer a compelling portrait of the Hilbert curve's properties and practical utility.
This blog post presents a different way to derive Shannon entropy, focusing on its property as a unique measure of information content. Instead of starting with desired properties like additivity and then finding a formula that satisfies them, the author begins with a core idea: measuring the average number of binary questions needed to pinpoint a specific outcome from a probability distribution. By formalizing this concept using a binary tree representation of the questioning process and leveraging Kraft's inequality, they demonstrate that -∑pᵢlog₂(pᵢ) emerges naturally as the optimal average question length, thus establishing it as the entropy. This construction emphasizes the intuitive link between entropy and the efficient encoding of information.
Hacker News users discuss the alternative construction of Shannon entropy presented in the linked article. Some express appreciation for the clear explanation and visualizations, finding the geometric approach insightful and offering a fresh perspective on a familiar concept. Others debate the pedagogical value of the approach, questioning whether it truly simplifies understanding for those unfamiliar with entropy, or merely offers a different lens for those already versed in the subject. A few commenters note the connection to cross-entropy and Kullback-Leibler divergence, suggesting the geometric interpretation could be extended to these related concepts. There's also a brief discussion on the practical implications and potential applications of this alternative construction, although no concrete examples are provided. Overall, the comments reflect a mix of appreciation for the novel approach and a pragmatic assessment of its usefulness in teaching and application.
Summary of Comments ( 5 )
https://news.ycombinator.com/item?id=42744932
Hacker News users generally praised the visualization and explanation of Hilbert curves in the linked blog post. Several appreciated the interactive nature and clear breakdown of the curve's construction. Some comments delved into practical applications, mentioning its use in mapping and image processing due to its space-filling properties and locality preservation. A few users pointed out its relevance to Morton codes (Z-order curves) and their applications in databases. One commenter linked to a Python implementation for generating Hilbert curves. The overall sentiment was positive, with users finding the post educational and well-presented.
The Hacker News post titled "Portrait of the Hilbert Curve (2010)" has a modest number of comments, focusing primarily on the mathematical and visual aspects of Hilbert curves, as well as some practical applications.
Several commenters appreciate the beauty and elegance of Hilbert curves, describing them as "mesmerizing" and "aesthetically pleasing." One points out the connection between the increasing order of the curve and the emerging visual detail, resembling a "fractal unfolding." Another emphasizes the self-similarity aspect, where parts of the curve resemble the whole.
The discussion also touches on the practical applications of Hilbert curves, particularly in mapping and image processing. One comment mentions their use in spatial indexing, where they can improve the efficiency of database queries by preserving locality. Another comment delves into how these curves can be used for dithering and creating visually appealing color gradients. A further comment references the use of Hilbert curves in creating continuous functions that fill space.
A few comments delve into the mathematical properties. One commenter discusses the concept of "space-filling curves" and how the Hilbert curve is a prime example. Another explains how these curves can map a one-dimensional interval onto a two-dimensional square. The continuous nature of the curve and its relationship to fractal dimensions are also briefly mentioned.
One commenter highlights the author's clear explanations and interactive visualizations, making the concept accessible even to those without a deep mathematical background. The code provided in the article is also praised for its clarity and simplicity.
While there's no single overwhelmingly compelling comment, the collective discussion provides a good overview of the Hilbert curve's aesthetic, mathematical, and practical significance. The commenters generally express admiration for the curve's properties and the author's presentation.