CyanView, a company specializing in camera control and color processing for live broadcasts, used Elixir to manage the complex visual setup for Super Bowl LIX. Their system, leveraging Elixir's fault tolerance and concurrency capabilities, coordinated multiple cameras, lenses, and color settings, ensuring consistent image quality across the broadcast. This allowed operators to dynamically adjust parameters in real-time and maintain precise visual fidelity throughout the high-stakes event, despite the numerous cameras and dynamic nature of the production. The robust Elixir application handled critical color adjustments, matching various cameras and providing a seamless viewing experience for millions of viewers.
Picoruby is a lightweight implementation of the Ruby programming language specifically designed for microcontrollers. Based on mruby/c, a minimal version of mruby, it aims to bring the flexibility and ease-of-use of a high-level language like Ruby to resource-constrained embedded systems. This allows developers to write more complex logic and algorithms on small devices using a familiar syntax, potentially simplifying development and improving code maintainability. The project includes a virtual machine, a garbage collector, and core Ruby classes, enabling a reasonable subset of Ruby functionality on microcontrollers.
HN users discussed the practicality and performance implications of using mruby and picoruby in resource-constrained environments. Some expressed skepticism about the actual performance benefits, questioning whether the overhead of the interpreter outweighs the advantages of using a higher-level language. Others highlighted the potential benefits for rapid prototyping and easier code maintenance. Several commenters pointed out that Lua is a strong competitor in this space, offering similar benefits with potentially better performance. The suitability of garbage collection for embedded systems was also debated, with concerns about unpredictable latency. Finally, some users shared their positive experiences using mruby in similar projects.
Wokwi now offers a web-based simulator for developing and debugging embedded Rust programs. This online tool allows users to write, build, and run Rust code targeted for various microcontrollers, including the AVR ATmega328P (like the Arduino Uno) and RP2040 (Raspberry Pi Pico), directly in the browser. The simulator features peripherals like LEDs, buttons, serial output, and an integrated logic analyzer, enabling interactive hardware simulation without requiring physical hardware. Code can be compiled and flashed to the virtual microcontroller, and the simulator provides a debugging environment for stepping through code and inspecting variables. This simplifies the embedded Rust development process, making it more accessible for learning and experimentation.
HN commenters generally expressed enthusiasm for Wokwi's online embedded Rust simulator. Several praised its ease of use and accessibility, noting it lowers the barrier to entry for embedded development. Some highlighted the educational benefits, particularly for those new to Rust or embedded systems. A few pointed out the limitations of simulation compared to real hardware, but acknowledged the simulator's value for initial development and testing. The discussion also touched on potential improvements, including support for more microcontrollers and peripherals, as well as integration with other tools. Some users shared their positive experiences using Wokwi for specific projects, further reinforcing its practical usefulness.
The blog post "A vending machine, on the internet" explores the concept of building a virtual vending machine using readily available web technologies. It details the author's project, which combines a physical interface (buttons and a display) with a web backend to simulate a real-world vending machine experience. The project uses a Raspberry Pi to control the physical components and communicates with a web server to manage inventory, process transactions, and deliver virtual "goods" like access codes or digital downloads. The post highlights the simplicity and accessibility of building such a project with tools like HTML, CSS, JavaScript, and Python, showcasing a fun and practical application of web development beyond traditional websites.
Hacker News users generally expressed enthusiasm for the internet-connected vending machine project. Several praised the creator's ingenuity and the "whimsical" nature of the project. Some commenters discussed the technical aspects, focusing on the use of a Raspberry Pi and the potential vulnerabilities of exposing such a device to the internet. Others shared similar personal projects, like controlling Christmas lights remotely. A few raised concerns about security and the practicality of the setup, questioning the real-world use cases beyond a fun experiment. There was also a short discussion about the cost-effectiveness of the hardware choices.
Summary of Comments ( 142 )
https://news.ycombinator.com/item?id=43479094
HN commenters generally praised Elixir's suitability for soft real-time systems like CyanView's video processing application. Several noted the impressive scale and low latency achieved. One commenter questioned the actual role of Elixir, suggesting it might be primarily for the control plane rather than the core video processing. Another highlighted the importance of choosing the right tool for the job and how Elixir fit CyanView's needs. Some discussion revolved around the meaning of "soft real-time" and the nuances of different latency requirements. A few commenters expressed interest in learning more about the underlying NIFs and how they interact with the BEAM VM.
The Hacker News post "Coordinating the Superbowl's visual fidelity with Cyanview" has a moderate number of comments, most revolving around the impressive scale and reliability achieved with Elixir and the interesting technical details of the system.
Several commenters express admiration for the robustness and real-time capabilities of the system described in the article. One user highlights the challenge of coordinating such a complex visual display with minimal latency and praises Elixir's suitability for this task. Another commenter points out the impressive uptime achieved, emphasizing the critical nature of reliability in a live, high-stakes environment like the Super Bowl.
There's a discussion around the use of Nerves, an Elixir framework for embedded systems, with one user questioning its role in this particular application. Another clarifies that Nerves likely handles the on-field hardware interfaces, while the core coordination logic runs on more powerful servers. This leads to a brief exchange about the distribution of the system and how different components communicate.
Some comments delve into specific technical aspects. One user inquires about the handling of network failures and redundancy measures. While the article doesn't provide explicit details, commenters speculate about potential strategies like hot spares and robust message queues. Another comment touches upon the topic of debugging and logging in such a distributed environment.
A few comments compare Elixir to other languages and frameworks, highlighting its advantages in concurrency and fault tolerance. One commenter mentions the growing adoption of Elixir in similar real-time applications, suggesting a trend toward its use in demanding, high-availability systems.
Finally, some comments simply express general appreciation for the article and the insight it provides into the behind-the-scenes technology of a major event like the Super Bowl. One user finds it fascinating to see how seemingly complex systems can be effectively managed with a well-chosen technology stack and careful design.