Story Details

  • Human coders are still better than LLMs

    Posted: 2025-05-29 16:41:04

    Antirez argues that Large Language Models (LLMs) are not superior to human coders, particularly for non-trivial programming tasks. While LLMs excel at generating boilerplate and translating between languages, they lack the deep understanding of systems and the ability to debug complex issues that experienced programmers possess. He believes LLMs are valuable tools that can augment human programmers, automating tedious tasks and offering suggestions, but they are ultimately assistants, not replacements. The core strength of human programmers lies in their ability to architect systems, understand underlying logic, and creatively solve problems—abilities that LLMs haven't yet mastered.

    Summary of Comments ( 62 )
    https://news.ycombinator.com/item?id=44127739

    HN commenters largely agree with Antirez's assessment that LLMs are not ready to replace human programmers. Several highlight the importance of understanding the "why" behind code, not just the "how," which LLMs currently lack. Some acknowledge LLMs' usefulness for generating boilerplate or translating between languages, but emphasize their limitations in tasks requiring genuine problem-solving or nuanced understanding of context. Concerns about debugging LLM-generated code and the potential for subtle, hard-to-detect errors are also raised. A few commenters suggest that LLMs are evolving rapidly and may eventually surpass humans, but the prevailing sentiment is that, for now, human ingenuity and understanding remain essential for quality software development. The discussion also touches on the potential for LLMs to change the nature of programming work, with some suggesting a shift towards more high-level design and oversight roles for humans.