Story Details

  • Alignment is not free: How model upgrades can silence your confidence signals

    Posted: 2025-05-06 23:22:49

    Upgrading a large language model (LLM) doesn't always lead to straightforward improvements. Variance experienced this firsthand when replacing their older GPT-3 model with a newer one, expecting better performance. While the new model generated more desirable outputs in terms of alignment with their instructions, it unexpectedly suppressed the confidence signals they used to identify potentially problematic generations. Specifically, the logprobs, which indicated the model's certainty in its output, became consistently high regardless of the actual quality or correctness, rendering them useless for flagging hallucinations or errors. This highlighted the hidden costs of model upgrades and the need for careful monitoring and recalibration of evaluation methods when switching to a new model.

    Summary of Comments ( 35 )
    https://news.ycombinator.com/item?id=43910685

    HN commenters generally agree with the article's premise that relying solely on model confidence scores can be misleading, particularly after upgrades. Several users share anecdotes of similar experiences where improved model accuracy masked underlying issues or distribution shifts, making debugging harder. Some suggest incorporating additional metrics like calibration and out-of-distribution detection to compensate for the limitations of confidence scores. Others highlight the importance of human evaluation and domain expertise in validating model performance, emphasizing that blind trust in any single metric can be detrimental. A few discuss the trade-off between accuracy and explainability, noting that more complex, accurate models might be harder to interpret and debug.