Story Details

  • Show HN: Keep your PyTorch model in VRAM by hot swapping code

    Posted: 2025-04-21 00:21:27

    This project introduces a method for keeping large PyTorch models loaded in VRAM while modifying and debugging the training code. It uses a "hot-swapping" technique that dynamically reloads the training loop code without restarting the entire Python process or unloading the model. This allows for faster iteration during development by eliminating the overhead of repeatedly loading the model, which can be time-consuming, especially with large models. The provided code demonstrates how to implement this hot-swapping functionality using a separate process that monitors and reloads the training script. This enables continuous training even as code changes are made and saved.

    Summary of Comments ( 7 )
    https://news.ycombinator.com/item?id=43747560

    Hacker News users discussed the practicality and limitations of the hot-swapping technique presented. Several commenters pointed out potential issues with accumulated state within the model, particularly with Batch Normalization layers and optimizers, questioning whether these are truly handled correctly by the method. The overhead of copying weights and the potential disruption of training flow were also raised as concerns. Some suggested alternative approaches like using smaller batches or gradient checkpointing to manage VRAM usage, viewing hot-swapping as a more complex solution to a problem addressable by simpler means. Others expressed interest in the technique for specific use cases, such as experimenting with different model architectures or loss functions mid-training. The discussion highlighted the trade-offs between the potential benefits of hot-swapping and the complexity of its implementation and potential unforeseen consequences.