Story Details

  • Limits of Smart: Molecules and Chaos

    Posted: 2025-03-27 16:51:23

    The post "Limits of Smart: Molecules and Chaos" argues that relying solely on "smart" systems, particularly AI, for complex problem-solving has inherent limitations. It uses the analogy of protein folding to illustrate how brute-force computational approaches, even with advanced algorithms, struggle with the sheer combinatorial explosion of possibilities in systems governed by physical laws. While AI excels at specific tasks within defined boundaries, it falters when faced with the chaotic, unpredictable nature of reality at the molecular level. The post suggests that a more effective approach involves embracing the inherent randomness and exploring "dumb" methods, like directed evolution in biology, which leverage natural processes to navigate complex landscapes and discover solutions that purely computational methods might miss.

    Summary of Comments ( 2 )
    https://news.ycombinator.com/item?id=43495476

    HN commenters largely agree with the premise of the article, pointing out that intelligence and planning often fail in complex, chaotic systems like biology and markets. Some argue that "smart" interventions can exacerbate problems by creating unintended consequences and disrupting natural feedback loops. Several commenters suggest that focusing on robustness and resilience, rather than optimization for a specific outcome, is a more effective approach in such systems. Others discuss the importance of understanding limitations and accepting that some degree of chaos is inevitable. The idea of "tinkering" and iterative experimentation, rather than grand plans, is also presented as a more realistic and adaptable strategy. A few comments offer specific examples of where "smart" interventions have failed, like the use of pesticides leading to resistant insects or financial engineering contributing to market instability.