Story Details

  • Sunset Geometry (2016)

    Posted: 2025-03-15 13:32:53

    This blog post explores the geometric relationship between the observer, the sun, and the horizon during sunset. It explains how the perceived "flattening" of the sun near the horizon is an optical illusion, and that the sun maintains its circular shape throughout its descent. The post utilizes basic geometry and trigonometry to demonstrate that the sun's lower edge touches the horizon before its upper edge, creating the illusion of a faster setting speed for the bottom half. This effect is independent of atmospheric refraction and is solely due to the relative positions of the observer, sun, and the tangential horizon line.

    Summary of Comments ( 6 )
    https://news.ycombinator.com/item?id=43372431

    HN users discuss the geometric explanation of why sunsets appear elliptical. Several commenters express appreciation for the clear and intuitive explanation provided by the article, with some sharing personal anecdotes about observing this phenomenon. A few question the assumption of a perfectly spherical sun, noting that atmospheric refraction and the sun's actual shape could influence the observed ellipticity. Others delve into the mathematical details, discussing projections, conic sections, and the role of perspective. The practicality of using this knowledge for estimating the sun's distance or diameter is also debated, with some suggesting alternative methods like timing sunset duration.