Story Details

  • Show HN: In-Browser Graph RAG with Kuzu-WASM and WebLLM

    Posted: 2025-03-10 15:12:57

    This blog post demonstrates a Retrieval Augmented Generation (RAG) pipeline running entirely within a web browser. It uses Kuzu-WASM, a WebAssembly build of the Kuzu graph database, to store and query a knowledge graph, and WebLLM, a library for running large language models (LLMs) client-side. The demo allows users to query the graph using natural language, with Kuzu translating the query into its native query language and retrieving relevant information. This retrieved context is then fed to a local LLM (currently, a quantized version of Flan-T5), which generates a natural language response. This in-browser approach offers potential benefits in terms of privacy, reduced latency, and offline functionality, enabling new possibilities for interactive and personalized AI applications.

    Summary of Comments ( 4 )
    https://news.ycombinator.com/item?id=43321523

    HN commenters generally expressed excitement about the potential of in-browser graph RAG, praising the demo's responsiveness and the possibilities it opens up for privacy-preserving, local AI applications. Several users questioned the performance and scalability with larger datasets, highlighting the current limitations of WASM and browser storage. Some suggested potential applications, like analyzing personal knowledge graphs or interacting with codebases. Concerns were raised about the security implications of running LLMs client-side, and the challenge of keeping WASM binaries up-to-date. The closed-source nature of KuzuDB also prompted discussion, with some advocating for open-source alternatives. Several commenters expressed interest in trying the demo and exploring its capabilities further.