Story Details

  • Probabilistic Time Series Forecasting

    Posted: 2025-03-10 13:08:15

    This project explores probabilistic time series forecasting using PyTorch, focusing on predicting not just single point estimates but the entire probability distribution of future values. It implements and compares various deep learning models, including DeepAR, Transformer, and N-BEATS, adapted for probabilistic outputs. The models are evaluated using metrics like quantile loss and negative log-likelihood, emphasizing the accuracy of the predicted uncertainty. The repository provides a framework for training, evaluating, and visualizing these probabilistic forecasts, enabling a more nuanced understanding of future uncertainties in time series data.

    Summary of Comments ( 5 )
    https://news.ycombinator.com/item?id=43320194

    Hacker News users discussed the practicality and limitations of probabilistic forecasting. Some commenters pointed out the difficulty of accurately estimating uncertainty, especially in real-world scenarios with limited data or changing dynamics. Others highlighted the importance of considering the cost of errors, as different outcomes might have varying consequences. The discussion also touched upon specific methods like quantile regression and conformal prediction, with some users expressing skepticism about their effectiveness in practice. Several commenters emphasized the need for clear communication of uncertainty to decision-makers, as probabilistic forecasts can be easily misinterpreted if not presented carefully. Finally, there was some discussion of the computational cost associated with probabilistic methods, particularly for large datasets or complex models.