Story Details

  • Differentiable Logic Cellular Automata

    Posted: 2025-03-06 23:43:37

    This blog post introduces Differentiable Logic Cellular Automata (DLCA), a novel approach to creating cellular automata (CA) that can be trained using gradient descent. Traditional CA use discrete rules to update cell states, making them difficult to optimize. DLCA replaces these discrete rules with continuous, differentiable logic gates, allowing for smooth transitions between states. This differentiability allows for the application of standard machine learning techniques to train CA for specific target behaviors, including complex patterns and computations. The post demonstrates DLCA's ability to learn complex tasks, such as image classification and pattern generation, surpassing the capabilities of traditional, hand-designed CA.

    Summary of Comments ( 59 )
    https://news.ycombinator.com/item?id=43286161

    HN users discussed the potential of differentiable logic cellular automata, expressing excitement about its applications in areas like program synthesis and hardware design. Some questioned the practicality given current computational limitations, while others pointed to the innovative nature of embedding logic within a differentiable framework. The concept of "soft" logic gates operating on continuous values intrigued several commenters, with some drawing parallels to analog computing and fuzzy logic. A few users desired more details on the training process and specific applications, while others debated the novelty of the approach compared to existing techniques like neural cellular automata. Several commenters expressed interest in exploring the code and experimenting with the ideas presented.