Story Details

  • Understand the Joule Thief Circuit

    Posted: 2025-03-02 22:02:36

    The Joule Thief circuit is a simple, self-oscillating voltage booster that allows low-voltage sources, like a nearly depleted 1.5V battery, to power devices requiring higher voltages. It uses a single transistor, a resistor, and a toroidal transformer with a feedback winding. When the circuit is energized, the transistor initially conducts, allowing current to flow through the primary winding of the transformer. This builds a magnetic field. As the current increases, the voltage across the resistor also increases, eventually turning the transistor off. The collapsing magnetic field in the transformer induces a voltage in the secondary winding, which, combined with the remaining battery voltage, creates a high voltage pulse suitable for driving an LED or other small load. The feedback winding further reinforces this process, ensuring oscillation and efficient energy extraction from the battery.

    Summary of Comments ( 0 )
    https://news.ycombinator.com/item?id=43235671

    Hacker News users discuss the Joule Thief circuit's simplicity and cleverness, highlighting its ability to extract power from nearly depleted batteries. Some debate the origin of the name, suggesting it's not about stealing energy but efficiently using what's available. Several commenters note the circuit's educational value for understanding inductors, transformers, and oscillators. Practical applications are also mentioned, including using Joule Thieves to power LEDs and as voltage boosters. There's a cautionary note about potential hazards like high-voltage spikes and flickering LEDs, depending on the implementation. Finally, some commenters offer variations on the circuit, such as using MOSFETs instead of bipolar transistors, and discuss its limitations with different battery chemistries.