Story Details

  • An Experimental Study of Bitmap Compression vs. Inverted List Compression

    Posted: 2025-02-28 15:04:43

    This study experimentally compares bitmap and inverted list compression techniques for accelerating analytical queries on relational databases. Researchers evaluated a range of established and novel compression methods, including Roaring, WAH, Concise, and COMPAX, across diverse datasets and query workloads. The results demonstrate that bitmap compression, specifically Roaring, consistently outperforms inverted lists in terms of query processing time and storage space for most workloads, particularly those with high selectivity or involving multiple attributes. While inverted lists demonstrate some advantages for low-selectivity queries and updates, Roaring bitmaps generally offer a superior balance of performance and efficiency for analytical workloads. The study concludes that careful selection of the compression method based on data characteristics and query patterns is crucial for optimizing analytical query performance.

    Summary of Comments ( 5 )
    https://news.ycombinator.com/item?id=43206385

    HN users discussed the trade-offs between bitmap and inverted list compression, focusing on performance in different scenarios. Some highlighted the importance of data characteristics like cardinality and query patterns in determining the optimal choice. Bitmap indexing was noted for its speed with simple queries on high-cardinality attributes but suffers from performance degradation with increasing updates or complex queries. Inverted lists, while generally slower for simple queries, were favored for their efficiency with updates and range queries. Several comments pointed out the paper's age (2017) and questioned the relevance of its findings given advancements in hardware and newer techniques like Roaring bitmaps. There was also discussion of the practical implications for database design and the need for careful benchmarking based on specific use cases.