Story Details

  • We in-housed our data labelling

    Posted: 2025-02-27 18:53:44

    Frustrated with slow turnaround times and inconsistent quality from outsourced data labeling, the author's company transitioned to an in-house labeling team. This involved hiring a dedicated manager, creating clear documentation and workflows, and using a purpose-built labeling tool. While initially more expensive, the shift resulted in significantly faster iteration cycles, improved data quality through closer collaboration with engineers, and ultimately, a better product. The author champions this approach for machine learning projects requiring high-quality labeled data and rapid iteration.

    Summary of Comments ( 28 )
    https://news.ycombinator.com/item?id=43197248

    Several HN commenters agreed with the author's premise that data labeling is crucial and often overlooked. Some pointed out potential drawbacks of in-housing, like scaling challenges and maintaining consistent quality. One commenter suggested exploring synthetic data generation as a potential solution. Another shared their experience with successfully using a hybrid approach of in-house and outsourced labeling. The potential benefits of domain expertise from in-house labelers were also highlighted. Several users questioned the claim that in-housing is "always" better, advocating for a more nuanced cost-benefit analysis depending on the specific project and resources. Finally, the complexities and high cost of building and maintaining labeling tools were also discussed.