Story Details

  • My LLM codegen workflow

    Posted: 2025-02-18 19:33:32

    Harper's LLM code generation workflow centers around using LLMs for iterative code refinement rather than complete program generation. They start with a vague idea, translate it into a natural language prompt, and then use an LLM (often GitHub Copilot) to generate a small code snippet. This output is then critically evaluated, edited, and re-prompted to the LLM for further refinement. This cycle continues, focusing on small, manageable pieces of code and leveraging the LLM as a powerful autocomplete tool. The overall strategy prioritizes human control and understanding of the code, treating the LLM as an assistant in the coding process, not a replacement for the developer. They highlight the importance of clearly communicating intent to the LLM through the prompt, and emphasize the need for developers to retain responsibility for the final code.

    Summary of Comments ( 146 )
    https://news.ycombinator.com/item?id=43094006

    HN commenters generally express skepticism about the author's LLM-heavy coding workflow. Several suggest that focusing on improving fundamental programming skills and using traditional debugging tools would be more effective in the long run. Some see the workflow as potentially useful for boilerplate generation, but worry about over-reliance on LLMs leading to a decline in core coding proficiency and an inability to debug or understand generated code. The debugging process described by the author, involving repeatedly prompting the LLM, is seen as particularly inefficient. A few commenters raise concerns about the cost and security implications of sharing sensitive code with third-party LLM providers. There's also a discussion about the limited context window of LLMs and the difficulty of applying them to larger projects.