Story Details

  • Benchmarking vision-language models on OCR in dynamic video environments

    Posted: 2025-02-14 07:26:16

    This paper introduces a new benchmark, OCR-Bench, specifically designed to evaluate the performance of vision-language models (VLMs) on Optical Character Recognition (OCR) within dynamic video environments. Existing OCR benchmarks primarily focus on static images, overlooking the challenges posed by video, such as motion blur, varying lighting, and camera angles. OCR-Bench comprises diverse video clips with text overlaid or embedded within the scene, encompassing various fonts, languages, and complexities. The benchmark provides a comprehensive evaluation across three core tasks: text detection, recognition, and grounding. By assessing VLMs on these tasks within a dynamic video context, OCR-Bench aims to drive the development of more robust and accurate VLMs for real-world video understanding.

    Summary of Comments ( 51 )
    https://news.ycombinator.com/item?id=43045801

    HN users discuss the challenges of OCR in video, particularly dynamic environments. Several commenters highlight the difficulty of evaluating OCR accuracy due to the subjective nature of "correctness" and the lack of standardized benchmarks. The impact of video compression, motion blur, and varying fonts/styles is also mentioned as complicating factors. One commenter suggests the need for a benchmark focused on specific use cases, like recognizing text in sporting events, rather than generic datasets. Another questions the value of focusing on vision-language models (VLMs) for this task, suggesting specialized OCR models might be more efficient. There's also a discussion about the limited real-world applications for this type of OCR beyond content moderation and surveillance, with some questioning the ethics of the latter.