Story Details

  • Antimony Atoms Function as Error-Resistant Qubits

    Posted: 2025-02-06 15:42:23

    Researchers have demonstrated that antimony atoms implanted in silicon can function as qubits with impressive coherence times—a key factor for building practical quantum computers. Antimony's nuclear spin is less susceptible to noise from the surrounding silicon environment compared to electron spins typically used in silicon qubits, leading to these longer coherence times. This increased stability could simplify error correction procedures, making antimony-based qubits a promising candidate for scalable quantum computing. The demonstration used a scanning tunneling microscope to manipulate individual antimony atoms and measure their quantum properties, confirming their potential for high-fidelity quantum operations.

    Summary of Comments ( 0 )
    https://news.ycombinator.com/item?id=42963414

    Hacker News users discuss the challenges of scaling quantum computing, particularly regarding error correction. Some express skepticism about the feasibility of building large, fault-tolerant quantum computers, citing the immense overhead required for error correction and the difficulty of maintaining coherence. Others are more optimistic, pointing to the steady progress being made and suggesting that specialized, error-resistant qubits like those based on antimony atoms could be a promising path forward. The discussion also touches upon the distinction between logical and physical qubits, with some emphasizing the importance of clearly communicating this difference to avoid hype and unrealistic expectations. A few commenters highlight the resource intensiveness of current error correction methods, noting that thousands of physical qubits might be needed for a single logical qubit, raising concerns about scalability.