Story Details

  • Evaluating Code Embeddings

    Posted: 2025-02-03 07:54:34

    Voyage's blog post details their approach to evaluating code embeddings for code retrieval. They emphasize the importance of using realistic evaluation datasets derived from actual user searches and repository structures rather than relying solely on synthetic or curated benchmarks. Their methodology involves creating embeddings for code snippets using different models, then querying those embeddings with real-world search terms. They assess performance using retrieval metrics like Mean Reciprocal Rank (MRR) and recall@k, adapted to handle multiple relevant code blocks per query. The post concludes that evaluating on realistic search data provides more practical insights into embedding model effectiveness for code search and highlights the challenges of creating representative evaluation benchmarks.

    Summary of Comments ( 0 )
    https://news.ycombinator.com/item?id=42915944

    HN users discussed Voyage's methodology for evaluating code embeddings, expressing skepticism about the reliance on exact match retrieval. Commenters argued that semantic similarity is more important for practical use cases like code search and suggested alternative evaluation metrics like Mean Reciprocal Rank (MRR) to better capture the relevance of top results. Some also pointed out the importance of evaluating on larger, more diverse datasets, and the need to consider the cost of indexing and querying different embedding models. The lack of open-sourcing for the embedding model and evaluation dataset also drew criticism, hindering reproducibility and community contribution. Finally, there was discussion about the limitations of current embedding methods and the potential of retrieval augmented generation (RAG) for code.