Story Details

  • Complete hardware and software setup for running Deepseek-R1 locally

    Posted: 2025-01-29 14:56:57

    This Twitter thread details a comprehensive guide to setting up Deepseek-R1, a retrieval-based question-answering system, on a local machine. It outlines the necessary hardware, recommending a powerful GPU (like an RTX 4090) with substantial VRAM (24GB+) for optimal performance and a hefty amount of RAM (128GB or more). The guide covers software prerequisites, including CUDA, cuDNN, Python, and various libraries, along with the steps to download and install Deepseek's specific dependencies. Finally, it provides instructions on how to download and convert the Large Language Model (LLM) and retriever components, offering different options depending on available hardware resources. The thread also includes tips on configuring the setup and troubleshooting potential issues.

    Summary of Comments ( 153 )
    https://news.ycombinator.com/item?id=42865575

    HN users discuss the practicality and cost of running the Deepseek-R1 model locally, given its substantial hardware requirements (8x A100 GPUs). Some express skepticism about the feasibility for most individuals, highlighting the significant upfront investment and ongoing electricity costs. Others suggest cloud computing as a more accessible alternative, albeit with its own expense. The discussion also touches on the potential for smaller, quantized models to offer a compromise between performance and resource requirements, with some expressing interest in seeing benchmarks comparing different model sizes. A few commenters question the necessity of such a large model for certain tasks and suggest exploring alternative approaches. Overall, the sentiment leans toward acknowledging the impressive technical achievement while remaining pragmatic about the accessibility challenges for average users.