Story Details

  • Promising results from DeepSeek R1 for code

    Posted: 2025-01-28 14:44:06

    Simon Willison achieved impressive code generation results using DeepSeek's new R1 model, running locally on consumer hardware via llama.cpp. He found R1, despite being smaller than other leading models, generated significantly better Python and JavaScript code, producing functional outputs on the first try more consistently. While still exhibiting some hallucination tendencies, particularly with external dependencies, R1 showed a promising ability to reason about code context and follow complex instructions. This performance, combined with its efficient local execution, positions R1 as a potentially game-changing tool for developer workflows.

    Summary of Comments ( 525 )
    https://news.ycombinator.com/item?id=42852866

    Hacker News users discuss the potential of the DeepSeek R1 chip, particularly its performance running Llama.cpp. Several commenters express excitement about the accessibility and affordability it offers for local LLM experimentation. Some raise questions about the chip's power consumption and whether its advertised performance holds up in real-world scenarios. Others note the rapid pace of hardware development in this space and anticipate even more powerful and efficient options soon. A few commenters share their experiences with similar hardware setups, highlighting the practical challenges and limitations, such as memory bandwidth constraints. There's also discussion about the broader implications of affordable, powerful local LLMs, including potential privacy and security benefits.