Story Details

  • Using Linear Programming to find optimal builds in League of Legend

    Posted: 2025-01-22 19:02:07

    The blog post explores using linear programming to optimize League of Legends character builds. It frames the problem of selecting items to maximize specific stats (like attack damage or ability power) as a linear program, where item choices are variables and stat targets are constraints. The author details the process of gathering item data, formulating the linear program, and solving it using Python libraries. They showcase examples demonstrating how this approach can find optimal builds based on desired stats, including handling gold constraints and complex item interactions like Ornn upgrades. While acknowledging limitations like the exclusion of active item effects and dynamic gameplay factors, the author suggests the technique offers a powerful starting point for theorycrafting and understanding item efficiency in League of Legends.

    Summary of Comments ( 15 )
    https://news.ycombinator.com/item?id=42796292

    HN users generally praised the approach of using linear programming for League of Legends item optimization, finding it clever and interesting. Some expressed skepticism about its practical application, citing the dynamic nature of the game and the difficulty of accurately modeling all variables, like player skill and enemy team composition. A few pointed out existing tools that already offer similar functionality, like Championify and Probuilds, though the author clarified their focus on exploring the optimization technique itself rather than creating a fully realized tool. The most compelling comments revolved around the limitations of translating theoretical optimization into in-game success, highlighting the gap between mathematical models and the complex reality of gameplay. Discussion also touched upon the potential for incorporating more dynamic factors into the model, like build paths and counter-building, and the ethical considerations of using such tools.