Story Details

  • Don't use cosine similarity carelessly

    Posted: 2025-01-14 21:23:21

    Cosine similarity, while popular for comparing vectors, can be misleading when vector magnitudes carry significant meaning. The blog post demonstrates how cosine similarity focuses solely on the angle between vectors, ignoring their lengths. This can lead to counterintuitive results, particularly in scenarios like recommendation systems where a small, highly relevant vector might be ranked lower than a large, less relevant one simply due to magnitude differences. The author advocates for considering alternatives like dot product or Euclidean distance, especially when vector magnitude represents important information like purchase count or user engagement. Ultimately, the choice of similarity metric should depend on the specific application and the meaning encoded within the vector data.

    Summary of Comments ( 70 )
    https://news.ycombinator.com/item?id=42704078

    Hacker News users generally agreed with the article's premise, cautioning against blindly applying cosine similarity. Several commenters pointed out that the effectiveness of cosine similarity depends heavily on the specific use case and data distribution. Some highlighted the importance of normalization and feature scaling, noting that cosine similarity is sensitive to these factors. Others offered alternative methods, such as Euclidean distance or Manhattan distance, suggesting they might be more appropriate in certain situations. One compelling comment underscored the importance of understanding the underlying data and problem before choosing a similarity metric, emphasizing that no single metric is universally superior. Another emphasized how important preprocessing is, highlighting TF-IDF and BM25 as helpful techniques for text analysis before using cosine similarity. A few users provided concrete examples where cosine similarity produced misleading results, further reinforcing the author's warning.