Story Details

  • Life on a Closed Timelike Curve

    Posted: 2025-01-12 21:33:23

    This paper explores the implications of closed timelike curves (CTCs) for the existence of life. It argues against the common assumption that CTCs would prevent life, instead proposing that stable and complex life could exist within them. The authors demonstrate, using a simple model based on Conway's Game of Life, how self-consistent, non-trivial evolution can occur on a spacetime containing CTCs. They suggest that the apparent paradoxes associated with time travel, such as the grandfather paradox, are avoided not by preventing changes to the past, but by the universe's dynamics naturally converging to self-consistent states. This implies that observers on a CTC would not perceive anything unusual, and their experience of causality would remain intact, despite the closed timelike nature of their spacetime.

    Summary of Comments ( 36 )
    https://news.ycombinator.com/item?id=42677158

    HN commenters discuss the implications and paradoxes of closed timelike curves (CTCs), referencing Deutsch's approach to resolving the grandfather paradox through quantum mechanics and many-worlds interpretations. Some express skepticism about the practicality of CTCs due to the immense energy requirements, while others debate the philosophical implications of free will and determinism in a universe with time travel. The connection between CTCs and computational complexity is also raised, with the possibility that CTCs could enable the efficient solution of NP-complete problems. Several commenters question the validity of the paper's approach, particularly its reliance on density matrices and the interpretation of results. A few more technically inclined comments delve into the specifics of the physics involved, mentioning the Cauchy problem and the nature of time itself. Finally, some commenters simply find the idea of time travel fascinating, regardless of the theoretical complexities.