Story Details

  • Compiling C to Safe Rust, Formalized

    Posted: 2024-12-20 23:30:03

    This paper introduces Crusade, a formally verified translation from a subset of C to safe Rust. Crusade targets a memory-safe dialect of C, excluding features like arbitrary pointer arithmetic and casts. It leverages the Coq proof assistant to formally verify the translation's correctness, ensuring that the generated Rust code behaves identically to the original C, modulo non-determinism inherent in C. This rigorous approach aims to facilitate safe integration of legacy C code into Rust projects without sacrificing confidence in memory safety, a critical aspect of modern systems programming. The translation handles a substantial subset of C, including structs, unions, and functions, and demonstrates its practical applicability by successfully converting real-world C libraries.

    Summary of Comments ( 157 )
    https://news.ycombinator.com/item?id=42476192

    HN commenters discuss the challenges and nuances of formally verifying the C to Rust transpiler, Cracked. Some express skepticism about the practicality of fully verifying such a complex tool, citing the potential for errors in the formal proofs themselves and the inherent difficulty of capturing all undefined C behavior. Others question the performance impact of the generated Rust code. However, many commend the project's ambition and see it as a significant step towards safer systems programming. The discussion also touches upon the trade-offs between a fully verified transpiler and a more pragmatic approach focusing on common C patterns, with some suggesting that prioritizing practical safety improvements could be more beneficial in the short term. There's also interest in the project's handling of concurrency and the potential for integrating Cracked with existing Rust tooling.